
1

Packet Filtering Firewalls

Hal Pomeranz
Deer Run Associates

All material in this course Copyright © Hal Pomeranz and Deer Run
Associates, 1998. All rights reserved.

 Hal Pomeranz * Founder/CEO * hal@deer-run.com

 Deer Run Associates * 7145 Homewood Drive * Oakland, CA 94611

 +1 510-339-7740 (voice and fax) * http://www.deer-run.com/

2

What Is a Packet Filter?

z Packet filters selectively allow network
datagrams based on header information

z Each packet is checked individually as it
passes through the firewall-- no "state"

z Packet filtering functionality included in
most routers

Packet filtering functionality (built into most modern routers) allows the router
to selectively permit or deny network traffic based on information in the
network headers. Standard packet filters don’t tend to read deeper than the
header information for performance reasons-- unpacking arbitrary network
datagrams would be difficult to impossible (encrypted traffic).

In general, each packet is considered individually without regard to any
packets that may have been inspected before. As we will see later, this makes
it difficult for packet filters to securely allow certain types of network traffic
(notably FTP sessions). More modern "stateful" packet filters exist as
commercial products from Checkpoint, Raptor, TIS, et al.

3

Why Use Packet Filters?

z Inexpensive

z One less device to maintain

z Can be used in places where a full firewall
installation isn't warranted

Packet filters can be an inexpensive way for many organizations to provide
basic firewalling capability for their networks. Since the security functionality
is already incorporated in a device that the organization maintains, there
should also be administrative savings.

In many cases, different parts of the same company may want to protect
themselves from each other but not need a full-blown commercial firewall.
For example, an organization might want to segregate its development lab
networks from its production networks, or keep LAN protocols on separate
networks from colliding. Applying packet filters at the router level is an
inexpensive option for achieving such goals.

4

Agenda

z Packet Filtering Basics

z Cisco Access Control Lists (ACLs)

z Internet Firewalls

z Final Thoughts

The rest of this presentation is divided into four sections:

Packet Filtering Basics-- How packet filters work, IP header information

Cisco Access Control Lists-- A high-speed introduction to the basics of writing
packet filters for Cisco routers.

Internet Firewalls-- Creating a simple Internet firewall using Cisco ACLs

Final Thoughts-- Caveats and some additional information about internal
firewalls and stateful firewalls

5

Packet Filtering Basics

Before you can begin writing firewalls you need to understand how packet
filters work and the contents of IP datagram headers that packet filters operate
on.

6

How Do Packet Filters Work?

z IP headers contain lots of information:
y Protocol
y Source and Destination Address
y Source and Destination Port
y Connection Status

z "Safe" traffic is identified using these
parameters, all other packets are blocked

When packet filtering functionality is enabled, each packet passing through the
router gets shunted to a special routine. This routine pulls out various pieces
of information from the IP header of the packet, and then consults a list of
rules configured by the administrator.

Each rule can specify any or all of the pieces of IP header information
available to the router. If the parameters specified by the rule match the
information in the packet header then that packet is permitted or denied as
specified in the rule. Generally speaking, packet filters follow a "first match
and exit" behavior-- the first rule to match the packet is the one that decides
the destiny of that packet, so order is very important.

Packet filters tend to operate in a "default deny" stance-- any traffic that isn't
specifically allowed by the filtering rules is automatically dropped.
Combining wildcarding with a "permit" type rule allows the administration to
configure a "default permit" stance if desired.

Some packet filters allow the administrator to specify what information the
remote user gets back if a packet is dropped by the filter. In some cases you
will want to send back an "administratively unreachable" message, sometimes
you just want the packets to black-hole with no message so outsiders can't
figure out what traffic you're blocking.

7

Protocol Types

z ICMP Well-known user app is ping

Useful but potentially dangerous msgs

z TCP telnet, FTP, Web, etc.

Easiest protocol to filter safely

z UDP Often used by video/audio apps
Difficult to filter safely

ICMP messages are used for low-level network control and testing. The ping
program uses ICMP messages, and while this program is useful it can also be
used by outsiders to map your internal network or wage a denial of service
attack. Other ICMP messages can actually cause networked devices to re-
route packets out a different gateway and otherwise play havoc with your
network's configuration. Blocking many ICMP messages may be a good idea.

TCP-based services are the backbone of the Internet. Standard Internet clients
like the telnet and ftp programs, as well as your Web browser use TCP.
Email and USENET are shipped around using TCP. TCP-based programs are
easy to filter because TCP connections (unlike ICMP and UDP streams) have a
notion of connection state which can be used to create "one-way" filters.

UDP is used when a more lightweight protocol is needed-- typically video and
audio streaming apps. The difficulty is that UDP has no sense of connection
state-- it's difficult for a packet filter to determine whether a given UDP
datagram is part of a session already in progress, or the start of a new (and
potentially malicious) session.

8

Well-Known Ports

z Each end of a network connection is bound to a
specific port

z Common servers assigned to well-known ports:
SMTP (email): 25/tcp

telnet: 23/tcp

HTTP (Web): 80/tcp

z Client side chooses a random port number

Two machines communicate across a network by directing packets of
information at each other using unique IP addresses. However, any given
machine may have dozens of simultaneous network connections happening at
any given moment. A network port is a logical construct which allows a
machine to keep multiple connections separate.

There are 16 bits of network port numbers-- TCP ports are distinct from UDP
ports. Ports 0 through 1023 are reserved and not generally available to normal
users. Furthermore, RFC1700 documents certain “well-known” ports that
have been assigned to common network servers.

Well-known ports allow client software, e.g. the telnet program, to easily
contact the appropriate server at the remote host. It would be impractical for a
client to randomly probe the remote machine trying to find a server that will
talk to it.

However, since the well-known ports constrain certain servers to listen on a
fixed port number, an administrator can prevent access to a certain service by
stopping packets targeted at a given network port. This is where packet filters
come in.

9

Logical Diagram: telnet

Client Server

port = 33987/tcp

 port = 23/tcp

 port = 33987/tcp port = 23/tcp

In general, network clients grab a random unused port above 1023 (remember,
ports lower than this are reserved). The client then constructs an initial packet
with this random port number and its own IP address in the source portion of
the packet. The destination is the IP address of the remote server and the well-
known port appropriate for the given service. In this case, we’re looking at a
telnet client-- the well-known port for this service is 23/tcp.

The server sends back an acknowledgement packet using the source IP address
and port from the initial packet. Remember in this case the server uses its own
IP address and port 23/tcp in as the source address and the IP address and
random port selected by the client are in the destination fields.

The client now acknowledges the server’s acknowledgement and the session
proceeds.

10

Connection Status

TCP packets have an “established” bit:

y The first packet in a session has this bit off

y The first return packet and all other packets
have this bit turned on

y Stop new connections by dropping packets
that do not have “established” bit on

TCP connections also have a notion of a session that is “in progress” as
opposed to the beginning of a new session. When a TCP client constructs the
initial packet of a network connection, it sets a bit in the packet header to
“false” indicating that no connection has been established yet. The first packet
returned by the remote server has this bit set to “true” indicating that the
packet is now part of a session in progress. All other packets sent by client
and server also have this bit set to “true”.

Thus, if you want to prevent outsiders from initiating connections, you need to
stop packets that have this established bit set to false. The problem is that only
TCP-based services use this bit. This is why UDP-based services are hard to
filter and generally not allowed through firewalls-- there’s no way to tell
whether this is a packet that’s part of a session started by a potential hacker on
the outside or a legitimate user on the inside.

Note that the technical name for the “established” bit is the ACK bit-- the
moniker “established bit” derives from the packet filtering syntax for Cisco
routers as we will see later.

11

Logical Diagram: telnet

Client Server

port = 33987/tcp

 established = false
 port = 23/tcp

established = true

established = true

 port = 33987/tcp port = 23/tcp

Here’s our telnet example again. Note that the first packet from client to
server has the established bit set to false. All subsequent packets have the bit
set to true. If our packet filters can stop that first packet, then the client may
never initiate a telnet session with the server.

Note that it is possible for an experienced network programmer to generate
that same initial packet except that the established bit is set to “true”.
However, the server will have no record of an established session and will tear
down the connection upon receiving the first packet from the client.

12

Direction Is Important!

 Client Is Server Is

 Source Addr/Port Dest Addr/Port

Client Server

 Client Is Server Is

 Dest Addr/Port Source Addr/Port

Typically the administrator configures separate filters for packets leaving the
organization and for packets coming in from the Internet. It is important to
remember that the source and destination address and port information
changes depending on which direction the packets are flowing in.

Note that for the rest of the examples in this talk, the internal machine (client
or server) or network will be represented to the left of the firewall device and
the external machine/network on the right.

13

Cisco Access Control Lists

Cisco's got the market share in the router business. Best to learn packet
filtering on this platform first.

Note that there is substantial difference in packet filtering syntax from one
vendor to another, but the core concepts are the same.

14

Basic Syntax

z ACLs are made up of individual rules:
 list identifier protocol destination address/port

access-list 101 permit tcp any gt 1024 172.16.0.0 0.0.255.255 eq 23

 action src addr/port

z Use “established” at the end of any rule
access-list 102 permit tcp any any established

Typical access lists can contain dozens or even hundreds of individual access-
list statements. The largest access list your author has seen included over
fourteen hundred individual rules.

Each access list begins with an identifying number which groups individual
rules into a single access list. Any number 100 or above may be used for
Cisco extended access lists (lower numbers are used for basic access lists
which have less functionality-- don’t bother).

Next comes the action. permit means allow matching packets, deny means
drop the offending packet and do not allow it to reach its destination.

Protocol can be tcp, udp, icmp, gre, etc. The protocol ip matches all
protocols.

Next comes a source address followed by a port specifier and then a
destination address and port specifier. Addresses can look like

172.16.0.0 0.0.255.255 network address

host 172.16.1.1 individual host

any match any addr

Port specifiers are generally a comparison operator (e.g. gt for greater than,
lt for less than, eq for equals) followed by a number. There is also a range
operator for specifying an inclusive range of ports. The port specifier is
always optional.

15

ACL Pitfalls

z First match and exit behavior

z Every ACL ends with an implicit “deny all”:

access-list xxx deny ip any any

z You can’t add rules in the middle of an
ACL-- must re-create the entire ruleset

It is important to remember that the router stops processing access lists as soon
as it finds a rule which matches. Order is important! Getting rules out of order
can allow traffic that you thought was denied.

Cisco access lists are always in default deny mode. You can stop this behavior
by putting

access-list xxx permit ip any any

as the last explicit rule in any access list.

Cisco routers do not allow you to edit your access lists and insert rules in the
middle. You must destroy and recreate a new access list to insert rules. I
recommend putting each access list in a file with the following preamble:

no access-list 101
access-list 101 …
access-list 101…

You can then use configure network to read in this file as an atomic
operation and update your ACL.

Over the years, many bugs have been reported against Cisco’s packet filtering
functionality-- particularly related to handling of the established bit. Note that
this is a good reason to trust Cisco’s packet filtering-- we think we’ve gotten
all of th bugs out at this point. Still, make sure you keep up to date on the
latest stable IOS release for your platform.

16

Using ACLs

z ACLs are applied to a specific router
interface in a specific direction:

interface Serial0

ip access-group 101 in

…

z Use different packet filters to control
packets coming in and out of a network

Once you define a complete access list, it must be assigned to a given
interface. A given access list may be used by multiple interfaces and a given
interface may use multiple access lists.

Note that access lists are applied to an interface in a given direction. If the
direction is in then the access list is evaluated as packets are picked up off the
wire, before making it into the router. If the direction is out then the access
list is evaluated as the packets leave the router.

Most packet filtering routers use one access list to control packets coming
from the “interior” network heading for the outside world and another to stop
packets coming in from outside.

Note that inward packet filtering is a relatively new development (circa IOS
version 10.0). In most cases, you can substitute an inbound filter on one
interface with an outbound filter on another interface.

17

Internet Firewalls

As an example of how to create access lists, we will be generating a small but
usable firewall access-list.

18

What You Need to Allow

z Outgoing Web, Email, telnet, etc.

z Incoming Email, Web?, USENET?

z Outgoing FTP (Incoming also?)

z Ping, Traceroute

z DNS

There is a tension when building a firewall between the desire to be secure and
the desire of your user community to try out spiffy new network protocols. If
your firewall is too draconian then users will go around your firewall with
modems and other access.

At a minimum you have to let users get out on the Internet and use common
clients like Web browsers, telnet/SSH, FTP, etc. There also has to be a
way for email and USENET to get in from the outside and to let external
customers browse your Web site. It's also useful to let network admins use
ping and traceroute from inside your enterprise, but it's not useful to
allow outsiders to map you networks with these tools.

Underlying all Intenet protocols is DNS. DNS is invisible until it stops
working, so one of our goals is to see that it remains invisible.

19

Outbound Services

 23/tcp (telnet)
 > 1023/tcp 25/tcp (SMTP)
 (established) 80/tcp (HTTP)

We saw an example of a telnet session earlier in the talk-- other TCP-based
services like SMTP (email) and HTTP (the Web) behave similarly. FTP does
not behave like telnet as we will see later.

For simplicity's sake, the connections are represented here with a single line.
The client grabs a high-order TCP port and sends an initial packet to the
appropriate service on the remote machine. All packets coming back should
have the established bit set.

20

Outbound Services (cont.)

access-list 101 permit tcp 192.168.1.0 0.0.0.255 any
!
access-list 102 permit tcp any 192.168.1.0 0.0.0.255 established

z Rather than list each service individually,
we allow any outbound TCP connection

z Only packets from established
sessions will be allowed back in

Rather than try to enumerate all of the possible TCP-based services your users
could demand, the easiest thing is to simply allow all outgoing TCP sessions
from your network(s). This seems like a reasonable security vs. ease of
administration trade-off and reduces load on the packet filtering device as well
since fewer rules will have to be evaluated.

21

Inbound Services

 25/tcp (SMTP)
 119/tcp (NNTP) > 1023
 80/tcp (HTTP) (established)

To allow connections in from the outside, the sense of the last example is
reversed. Connections will be initiated from high-order ports on external
machines and come into your network with the established bit off.

22

Inbound Services (cont.)

access-list 101 permit tcp host 192.168.1.1 any established
!
access-list 102 permit tcp any host 192.168.1.1 eq 25
access-list 102 permit tcp any host 192.168.1.1 eq 80
access-list 102 permit tcp host 172.16.1.10 host 192.168.1.1 eq 119

z Be as specific as possible when granting
access to outsiders

z access-list 101 rule is redundant
because of rules for outgoing services

The general rule in any firewall configuration is that outsiders are completely
untrustworthy, their systems are a haven for malicious system crackers, and
every network between you and them is being watched by packet sniffers
(paranoia is a job requirement for Security Admins). External folks should
only be granted access to the limited systems and services that they absolutely
have to have. Better still is to locate "public" services like your Web and FTP
servers on an external network which is on the opposite side of your firewall
from your "internal" network.

In the example above, we're saying that the internal host with address
192.168.1.1 is the organization's mail, news, and Web server. Any
external machine is allowed to send mail to this machine and browse the Web
server, but only our upstream news feed can reach us on the NNTP port. Note
that restricting NNTP access to a single host isn't a total win since the source
address could be spoofed or the external news server could have been broken
into.

Strong authentication and encryption are always a good idea in addition to any
packet filtering you may be doing.

23

The Problem With FTP

FTP Command Stream
 > 1023/tcp 21/tcp

 (established)

 > 1023 20/tcp

FTP Data Stream

The FTP protocol is actually two separate network connections. When you
first FTP to a remote server, your client opens the FTP command stream to the
remote server on port 21/tcp. Your login session, and other commands are
issued down this connection.

However, every time you want to download or upload a file, or when you want
to get a directory listing, the remote server opens a connection to you from
port 20/tcp (the FTP server runs as root), to a random high-order port on
your machine that your client has agreed to via the command connection.
Your firewall is probably configured to block random TCP connections
coming in from outside-- which is exactly what the FTP data stream looks like
to a stateless firewall.

24

FTP Problem (cont.)

access-list 101 permit tcp 192.168.1.0 0.0.0.255 any
!
access-list 102 permit tcp any eq 20 192.168.1.0 0.0.0.255 gt 1023

z Source port information could be spoofed:
crackers can have access to all high ports!

z Best to use a stateful firewall, an FTP
proxy server, or passive FTP

One option is to allow any connection whose source port is 20/tcp. The
problem here is that packet header information can be forged. By creating a
packet with the appropriate source port, a malicious outsider can access any
high-order TCP port on your network-- X Windows servers, NFS servers, etc.

Stateful firewalls watch the FTP command stream. When you make a
download request with your client, the stateful firewall knows to expect a
connection from the remote system on the specified port. There is still some
possibility that a malicious outsider could jump in and establish their own
connection, but they only have access to a single port on your machine and the
best they can do is download spurious data to you (which could be very bad if
the spurious content is, say, a virus).

FTP proxy servers exist (see www.socks.nec.com) which can be located
on an external network and safely move FTP traffic through your firewall.
Proxy servers typically watch the FTP command stream just like stateful
firewalls and know when to expect return data connections.

Passive FTP (see next slide) is also an option...

25

Passive FTP

FTP Command Stream
 > 1023/tcp 21/tcp

 (established)

> 1023/tcp (est.) > 1023/tcp

FTP Data Stream

Passive FTP clients work just like standard FTP clients except that your client
makes the FTP data connection to the remote server, rather than the other way
around. This means that the FTP data connection just looks like any other
outgoing TCP connection (which we already allowed in an earlier slide).

Web browsers which support FTP are always passive FTP clients. Some other
Unix clients (ncftp) support PASV mode.

Note that some sites whose FTP servers are behind firewalls do not allow
passive FTP connections. They'd have to open all high-order TCP ports to
their FTP server through their firewall and some organizations are unwilling to
take this risk.

26

Ping

ICMP Echo Request

ICMP Echo Reply

The ping program emits a special ICMP message known as the echo request
package. At the lowest level of a its network stack, the remote server upon
receiving an echo request will send back an ICMP echo reply.

Cisco packet filters (possibly others) allow you to block ICMP messages by
message type. By permitting echo requests to go out and echo replies to come
back in but not vice-versa, you have effectively deployed a one-way ping
filter. Since there are a number of denial of service type attacks which use
ICMP echo request packets, blocking incoming instances is a very good thing.

27

Traceroute

 > 1023/udp > 1023/udp
 (incrementing)

ICMP Time Exceeded, Unreachable

Many administrators think that traceroute is also ICMP based. It turns
out that traceroute is a very cool hack that sends out UDP packets and
waits for standard ICMP network errors to come back.

Every IP packet has a "hop count" field. Each time a router forwards a packet,
it reduces the hop count in the packet header by one. If this reduces the hop
count to zero, the packet is dropped and the router sends back an ICMP time
exceeded message.

traceroute sends out a stream of packets to high-order UDP ports on the
remote system. The first packet has its hop count set to one, so the first router
that's encountered drops the packet and sends back time exceeded.
traceroute gets the IP address of this router from the header of the ICMP
packet and displays it (or the hostname from DNS). The next packet has hop
count two, so it gets one router farther before failing. The next packet has hop
count three, and so on.

Ultimately, the hop count will be large enough that the packet gets to its
destination. At this point, there is usually no server listening on the random
port chosen by traceroute and the remote machine sends back ICMP
unreachable. traceroute displays the hostname and stops.

28

Ping/Traceroute

access-list 101 permit icmp 192.168.1.0 0.0.0.255 any echo
access-list 101 permit udp 192.168.1.0 0.0.0.255 gt 1023 any gt 1023
!
access-list 102 permit icmp any 192.168.1.0 0.0.0.255 echo-reply
access-list 102 permit icmp any 192.168.1.0 0.0.0.255 time-exceeded
access-list 102 permit icmp any 192.168.1.0 0.0.0.255 unreachable

z Remember that all other ICMP packets will
be stopped-- this is a one-way filter

z "smurf" attacks from outside will fail!

For ping, we allow ICMP echo request packets to escape from our network
and echo replies to come back.

For traceroute, we have to allow the outgoing UDP packets to escape and let
the time exceeded and unreachable messages to come back in.

Note that the default deny stance enforced by Cisco routers prevents the same
packets from coming in from outside as well as the responses from escaping
your network. Other dangerous ICMP packets are also blocked.

29

DNS -- Normal Operations

 53/udp 53/udp

When your local machine needs to look up information via DNS, it typically
does a lookup to a local nameserver which is situated behind your firewall on
your internal network. If this server doesn't have the information you
requested in its cache, it makes "server-to-server" queries to remote
nameservers outside your firewall. These queries happen on 53/udp (both
source and destination ports). You should only allow UDP connections on
53/udp to enable DNS.

Actually, this was the behavior in BIND v4. BIND v8 has changed the default
behavior for server-to-server queries: now you local nameserver picks a
random port above 1023 for its connections. This breaks most existing
firewalls. The

 query-source address * port 53;

line in the options block of named.conf forces the old 53/udp for
source and destination behavior.

30

DNS -- Large Response

 > 1023/tcp 53/tcp
 (established)

If the remote name server detects that its response to your server-to-server
query would be larger than 512 bytes, it sends back a UDP packet which
instructs your local nameserver to redo the query using TCP. This is a
standard outbound TCP connection: your nameserver grabs a random high-
order TCP port and connects to 53/tcp on the remote system, so TCP retries
are already permitted by our previous examples.

31

DNS -- Zone Transfers

 53/tcp > 1023
 (established)

Finally, if you have external secondary nameservers outside your firewall, you
have to allow them to transfer your DNS zone files from your primary name
server (actually you can have them do zone transfers from a secondary server--
possibly located on your external network outside of your firewall?). This is
an inbound TCP connection to 53/tcp on your internal nameserver.

32

DNS Filtering Rules

access-list 101 permit udp host 192.168.1.1 eq 53 any eq 53
access-list 101 permit tcp host 192.168.1.1 gt 1023 any eq 53
access-list 101 permit tcp host 192.168.1.1 eq 53 host 172.16.1.1 established
!
access-list 102 permit udp any eq 53 host 192.168.1.1 eq 53
access-list 102 permit tcp host 172.16.1.1 host 192.168.1.1 eq 53
access-list 102 permit tcp any host 192.168.1.1 established

z Try to avoid forcing outside machines to
make DNS queries using TCP

z Limit zone transfer access via ACLs and
DNS server configuration directives

In this example, the host 192.168.1.1 is our internal nameserver and
172.16.1.1 is an external secondary server.

We allow UDP connections on 53/udp for server-to-server queries between
our internal nameserver and any external host. We also allow outgoing TCP
connections, though this rule is redundant given our earlier examples. Finally
we allow the response packets to zone transfer attempts by our external
secondary to escape.

Inbound we need to allow the return UDP packets from our server-to-server
queries. We also need to permit the initial zone transfer connection from our
remote secondary as well as allow packets from established sessions.

It's probably a good idea to try and prevent outsiders from downloading your
entire zone file at one time since it potentially contains a lot of damaging
information. This is why we were so specific about access to 53/tcp in our
example. However, if your internal DNS server is going to generate large
responses to external queries (e.g. many nameservers for your domain, or a
single host with lots of interfaces), you will need to allow everybody in the
world to get at 53/tcp or the TCP-based retries will fail.

While most nameserver can and should be configured to limit zone transfers to
known hosts, it's also a good idea to arrange things so that you don't force
external nameservers to retry with TCP.

33

Putting It All Together
! Global configuration directives
no ip source-route
no service tcp-small-servers
no service udp-small-servers
!
! … other configuration directives …
!
! Interface declaration
interface Ethernet0
 ip address 192.168.1.254 255.255.255.0
 ip access-group 101 in
 no ip directed-broadcast
 no ip unreachables
!
! … other interface declaration deleted in the interests of space …
!

Before we get to the actual ACLs, it's useful to look at some other
configuration directive you can use to improve security on your Cisco.

no ip source-route causes your router to drop any packets that come in
with source routing information-- typically used these days by people trying to
bypass your network security policy. no service *-small-servers
stops your router from responding to service requests like echo and
chargen which can be used as a denial of service attack on your router.

Under the interface declaration, no ip directed-broadcast will cause
your router to drop packets headed for the broadcast address on the LAN that
router interface is connected to. This can prevent your networks from being
used as an intermediate network in a smurf attack. no ip unreachables
stops your router from sending back ICMP administratively unreachable
messages when it drops a packet and makes the router just drop packets
silently-- useful for not giving away too much detail regarding your firewalling
policy.

34

Putting It All Together (cont.)

! Filters packets leaving our enterprise heading for the Internet
access-list 101 permit tcp 192.168.1.0 0.0.0.255 any
!
access-list 101 permit udp 192.168.1.0 0.0.0.255 eq 53 any eq 53
!
access-list 101 permit udp 192.168.1.0 0.0.0.255 gt 1023 any gt 1023
access-list 101 permit icmp 192.168.1.0 0.0.0.255 any echo

Merging all of the examples from previous slides in this section and removing
redundant rules, we're left with a very simple filter for controlling packets
leaving our network for the Internet.

We allow any TCP connection outbound, including telnet, HTTP, mail, and
DNS queries. We also allow UDP-based server-to-server DNS queries. We
also allow the initiating packets for traceroute and ping.

In general, outbound filters tend to be shorter than inbound filters since we're
more lenient with what our internal users can do to the outside world.

35

Putting It All Together (cont.)

! Filters packets coming in from the Internet
access-list 102 deny ip 192.168.1.0 0.0.0.255 any
access-list 102 deny ip 127.0.0.0 0.255.255.255 any
!
access-list 102 permit tcp any 192.168.1.0 0.0.0.255 established
access-list 102 permit tcp any host 192.168.1.1 eq 25
access-list 102 permit tcp host 172.16.1.10 host 192.168.1.1 eq 119
!
access-list 102 permit udp any eq 53 host 192.168.1.1 eq 53
access-list 102 permit tcp host 172.16.1.1 host 192.168.1.1 eq 53
!
access-list 102 permit icmp any 192.168.1.0 0.0.0.255 echo-reply
access-list 102 permit icmp any 192.168.1.0 0.0.0.255 time-exceeded
access-list 102 permit icmp any 192.168.1.0 0.0.0.255 unreachable

[Interface declaration deleted in the interests of space]

The first rules in the incoming packet filter are new. These are generally
referred to as "anti-spoofing" rules and should be at the beginning of any
inbound access list. They prevent outsiders from injecting spoofed packets
that pretend to be from hosts on your internal network. They can also warn
you if there's a back-door to your network that's leaking packets out onto the
Internet.

Next we have the rule which permits packets from established TCP sessions to
come back into hosts on your internal network. This rule will hit about 95% of
the packets coming into your network so it's best for performance (remember:
"first match and exit") to put it as high up in the list as possible (right after the
anti-spoofing filters. This is the only way you can have 1400 lines of access
list and prevent your router from choking.

Next we allow inbound SMTP connections from anywhere, and NNTP
connections (USENET) from our upstream newsfeed. Next we permit DNS
server-to-server queries and zone transfers (only from our external secondary).

Finally we allow the responses from our pings and traceroutes.

36

Final Thoughts

Some final notes that weren't able to be worked in elsewhere or which need
special emphasis.

37

Caveats

z Packet filters are a good first-line defense
z Need to be combined with strong

authentication and encryption solutions
z Cannot help you protect poorly designed

network protocols (e.g. H.323 services)
z Won't help protect you from active

content (virii, Java, ActiveX, etc.)

While using packet filters can significantly improve the security of your
organization, they are not a complete solution. Strong authentication and solid
encryption are needed-- particularly if you allow your users to get into internal
machines from outside your firewall. Look into SSH, one-time passwords, and
other security tools. Note that many routers include VPN functionality which
can be used to safely route traffic over public (hostile) networks.

Some network protocols simply cannot be handled by simple packet filters.
Sometimes this is simply bad design. In any event, you will need a stateful
firewall or a proxy server to safely allow these services for internal use. Some
network scans and other attacks can bypass the packet filters we've
implemented in this class. Bottom line is that you probably will need a
modern, stateful firewall for at least your Internet connection.

On the other hand, stateful firewalls can be a significant performance
bottleneck. Consider delpoying packet filters both in front of and behind your
stateful firewall. Every packet stopped by the packet filter is one less packet
that has to get considered by your stateful device and overall things will run
much faster. Unfortunately you lose out on the stateful firewall device being
the sole point of logging for network events.

You may also want to employ solutions for filtering active content from Web
pages and email messages.

38

Internal Firewalls

z Packet filters can also be used to protect
interior networks from each other

z Good for stopping "packets o' death" from
escaping testing labs

z Probably should be in "default permit"
stance, rather than "default deny"

While this course concentrated on using packet filters as an Internet firewall,
simple packet filters can and should be used inside your company to prevent
obviously broken packets from causing problems on your network. This is
particularly important if part of your company develops networking products.

In general these filters are set up to either allow a very large generic group of
hosts (e.g., all valid addresses in your organization), or are in a "default
permit" stance where every packet is allowed except certain known "bad
packets". It may be hard to enumerate all of the possible "bad" packets that
could be generated-- "default deny" may be safer.

39

Stateful Firewalls

z Stateful firewalls inspect packet contents
and understand application stream

z Permit return FTP data stream or other
external connects based on previous state

z Have to be extended on a protocol by
protocol basis-- some development lag

z Often run on Unix/NT platforms, so
platform security becomes an issue

In general, stateful packet filters perform some level of content analysis on
packets as they pass through the firewall. For example, the firewall will
reconstruct the FTP command stream and look for attempts to download files
or get directory listings. With this information, the firewall can prepare to
accept the return FTP data connection from the remote host.

The difficulty is that each protocol has to be coded into the firewall's state
engine separately. This means a 3-6 month minimum lag time before the
firewall is ready to deal intelligently with a new protocol (though basic packet
filtering type functionality will be available, even in stateful firewalls).

Note also that these firewall products are relatively new, fairly complex pieces
of software running on multi-user computing platforms (unlike, say, a router).
Even assuming the firewall software itself is bug-free, security shortcomings
in the underlying OS platform can allow crackers to subvert your firewall and
break into your enterprise.

40

That's It!

z Questions?

z Please fill out your surveys!

This space intentionally left blank.

	Packet Filtering Firewalls
	What Is a Packet Filter?
	Why Use Packet Filters?
	Packet Filtering Basics
	How Do Packet Filters Work?
	Protocol Types
	Well-Known Ports
	Logical Diagram: telnet
	Connection Status
	Logical Diagram: telnet
	Direction Is Important!

	Cisco Access Control Lists
	Basic Syntax
	ACL Pitfalls
	Using ACLs

	Internet Firewalls
	What You Need to Allow
	Outbound Services
	Outbound Services (cont.)
	Inbound Services
	Inbound Services (cont.)
	The Problem With FTP
	FTP Problem (cont.)
	Passive FTP
	Ping
	Traceroute
	Ping/Traceroute
	DNS -- Normal Operations
	DNS -- Large Response
	DNS -- Zone Transfers
	DNS Filtering Rules
	Putting It All Together
	Putting It All Together (cont.)
	Putting It All Together (cont.)

	Caveats
	Internal Firewalls
	Stateful Firewalls
	Back to TOC

