Linux Ext2fs Un-deletion mini-HOWTO

Table of Contents

1. Introduction

 1.1 Revision history

 1.1.1 Changes in version 1.1

 1.1.2 Changes in version 1.2

 1.1.3 Changes in version 1.3

 1.2 Canonical locations of this document

2. How not to delete files

3. What recovery rate can I expect?

4. So, how do I undelete a file?

5. Unmounting the file system

6. Preparing to change inodes directly

7. Preparing to write data elsewhere

8. Finding the deleted inodes

9. Obtaining the details of the inodes

10. Recovering data blocks

 10.1 Short files

 10.2 Longer files

11. Modifying inodes directly

12. Will this get easier in future?

13. Are there any tools to automate this process?

14. Colophon

15. Credits and Bibliography

16. Legalities

__

1. Introduction

This mini-Howto attempts to provide hints on how to retrieve deleted files from an ext2 file system. It also contains a limited amount of discussion of how to avoid deleting files in the first place.

I intend it to be useful certainly for people who have just had, shall we say, a little accident with rm; however, I also hope that people read it anyway. You never know: one day, some of the information in

here could save your bacon.

The text assumes a little background knowledge about UNIX file systems in general; however, I hope that it will be accessible to most Linux users. If you are an outright beginner, I'm afraid that undeleting files under Linux does require a certain amount of technical knowledge and persistence, at least for the time being.

You will be unable to recover deleted files from an ext2 file system without at least read access to the raw device on which the file was stored. In general, this means that you must be root, but some

distributions (such as Debian GNU/Linux) provide a disk group whose members have access to such devices. You also need debugfs from the e2fsprogs package. This should have been installed by your

distribution.

Why have I written this? It stems largely from my own experiences with a particularly foolish and disastrous rm -r command as root. I deleted about 97 JPEG files, which I needed and could almost certainly not recover from other sources. Using some helpful tips (see section ``Credits and Bibliography'') and a great deal of persistence, I recovered 91 files undamaged. I managed to retrieve at least parts of five of the rest (enough to see what the picture was in each case).

Only one was undisplayable, and even for this one, I am fairly sure that no more than 1024 bytes were lost (though unfortunately from the beginning of the file; given that I know nothing about the JFIF file

format I had done as much as I could).

I shall discuss further below what sort of recovery rate you can expect for deleted files.

1.2. Canonical locations of this document

The latest public release of this document should always be available in on the Linux Documentation Project site <http://metalab.unc.edu/LDP/> (and mirrors).

The latest release is also kept on my website <http://pobox.com/~aaronc/> in several formats:

· SGML source <http://pobox.com/~aaronc/tech/e2-undel/howto.sgml>. This is the source as I have written it, using the SGML Tools package.

· HTML <http://pobox.com/~aaronc/tech/e2-undel/html/>. This is HTML, automatically generated from the SGML source.

· Plain text <http://pobox.com/~aaronc/tech/e2-undel/howto.txt>. This is plain text, which is also automatically generated from the SGML source.

2. How not to delete files

It is vital to remember that Linux is unlike MS-DOS when it comes to undeletion. For MS-DOS (and its bastard progeny Windows 9x / NT, 2k, XP), it is generally fairly straightforward to undelete a file - the `operating system' (I use the term loosely) even comes with a utility, which automates much of the process. For Linux, this is not the case.

So. Rule number one (the prime directive, if you will) is:

 KEEP BACKUPS

No matter what. Think of all your data. Perhaps, like me, you keep several years' of accumulated email, contacts, programs, papers on your computer. Think of how your life would be turned upside down if you had a catastrophic disk failure, or if -- heaven forbid! – a malicious cracker wiped your disks. This is not unlikely; I have corresponded with a number of people in just such a situation. I exhort all right-thinking Linux users to go out and buy a useful backup device, work out a decent backup schedule, and to stick to it. Myself, I use a spare hard disk on a second machine, and periodically mirror my home directory onto it over the ethernet.

In the absence of backups, what then? (Or even in the presence of backups: belt and braces is no bad policy where important data is concerned.)

Try to set the permissions for important files to 440 (or less):

denying yourself write access to them means that rm requires an explicit confirmation before deleting. (I find, however, that if I'm recursively deleting a directory with rm -r, I'll interrupt the program on the first or second confirmation request and reissue the command as rm -rf.)

A good trick for selected files is to create a hard link to them in a hidden directory. I heard a story once about a sysadmin who repeatedly deleted /etc/passwd by accident (thereby half-destroying the system).

One of the fixes for this was to do something like the following (as root):

 # mkdir /.backup

 # ln /etc/passwd /.backup

It requires quite some effort to delete the file contents completely: if you say

 # rm /etc/passwd

then

 # ln /.backup/passwd /etc

Will retrieve it. Of course, this does not help in the event that you overwrite the file, so keep backups anyway.

On an ext2 file system, it is possible to use ext2 attributes to protect things. These attributes are manipulated with the chattr command. There is an `append-only' attribute: a file with this attribute may be appended to, but may not be deleted, and the existing contents of the file may not be overwritten. If a directory has this attribute, any files or directories within it may be modified as normal, but no files may be deleted. The `append-only' attribute is set with

 $ chattr +a FILE...

There is also an `immutable' attribute, which can only be set or cleared by root. A file or directory with this attribute may not be modified, deleted, renamed, or (hard) linked. It may be set as follows:

 # chattr +i FILE...

The ext2fs also provides the `undeletable' attribute (+u in chattr). The intention is that if a file with that attribute is deleted, instead of actually being reused, it is merely moved to a `safe location' for deletion at a later date. Unfortunately this feature has not yet been implemented in mainstream kernels; and though in the past there has been some interest in implementing it, it is not (to my knowledge) available for any current kernels.

Some people advocate making rm a shell alias or function for rm –I (which asks for confirmation on every file you delete). Indeed, the Red Hat distribution <http://www.redhat.com/> does this by default for all users, including root. Personally, I cannot stand software which won't run unattended, so I don't do that.

There is also the problem that sooner or later, you'll be running in single-user mode, or using

a different shell, or even a different machine, where your rm function doesn't exist. If you expect to be asked for confirmation, it is easy to forget where you are and to specify too many files for deletion. Likewise, the various scripts and programs that replace rm are, IMHO, very dangerous.

A slightly better solution is to start using a package which handles `recyclable' deletion by providing a command not named rm. These however still suffer from the problem that they tend to encourage the user to have a nonchalant attitude to deletion, rather than the cautious approach that is often required on Unix systems.

3. What recovery rate can I expect?

That depends. Among the problems with recovering files on a high- quality, multi-tasking, multi-user operating system like Linux is that you never know when someone wants to write to the disk. So when the operating system is told to delete a file, it assumes that the blocks used by that file are fair game when it wants to allocate space for a new file. (This is a specific example of a general principle for Unix-like systems: the kernel and the associated tools assume that the users aren't idiots.) In general, the more usage your machine gets, the less likely you are to be able to recover files successfully.

Also, disk fragmentation can affect the ease of recovering files. If the partition containing the deleted files is very fragmented, you are unlikely to be able to read a whole file.

If your machine, like mine, is effectively a single-user workstation, and you weren't doing anything disk-intensive at the fatal moment of deleting those files, I would expect a recovery rate in the same ball-

park as detailed above. I retrieved nearly 94% of the files (and these were binary files, please note) undamaged. If you get 80% or better, you can feel pretty pleased with yourself, I should think.

4. So, how do I undelete a file?

The procedure principally involves finding the data on the raw partition device and making it visible again to the operating system. There are basically two ways of doing this: one is to modify the existing file system such that the deleted inodes have their `deleted' flag removed, and hope that the data just magically falls back into place. The other method, which is safer but slower, is to work out where the data lies in the partition and write it out into a new file on another file system.

There are some steps you need to take before beginning to attempt your data recovery; see sections ``Unmounting the file system'', ``Preparing to change inodes directly'' and ``Preparing to write data

elsewhere'' for details. To find out how to actually retrieve your files, see sections ``Finding the deleted inodes'', ``Obtaining the details of the inodes'', ``Recovering data blocks'' and ``Modifying inodes directly''.

5. Unmounting the file system

Regardless of which method you choose, the first step is to unmount the file system containing the deleted files. I strongly discourage any urges you may have to mess around on a mounted file system. This step should be performed as soon as possible after you realize that the files have been deleted; the sooner you can unmount, the smaller the chance that your data will be overwritten.

The simplest method is as follows: assuming the deleted files were in the /usr file system, say:

 # umount /usr

You may, however, want to keep some things in /usr available. So remount it read-only:

 # mount -o ro,remount /usr

If the deleted files were on the root partition, you'll need to add a -n option to prevent mount from trying to write to /etc/mtab:

 # mount -n -o ro,remount /

Regardless of all this, it is possible that there will be another process using that file system (which will cause the unmount to fail with an error such as `Resource busy'). There is a program which will send a signal to any process using a given file or mount point: fuser.
Try this for the /usr partition:

 # fuser -v -m /usr

This lists the processes involved. Assuming none of them are vital, you can say

 # fuser -k -v -m /usr

to send each process a SIGKILL (which is guaranteed to kill it), or for example,

 # fuser -k -TERM -v -m /usr

to give each one a SIGTERM (which will normally make the process exit cleanly).

6. Preparing to change inodes directly

My advice? Don't do it this way. I really don't think it's wise to play with a file system at a low enough level for this to work. This method also has problems in that you can only reliably recover the first 12 blocks of each file. So if you have any long files to recover, you'll normally have to use the other method anyway. (Although see section ``Will this get easier in future?'' for additional information.)

If you feel you must do it this way, my advice is to copy the raw partition data to an image on a different partition, and then mount this using loopback:

 # cp /dev/hda5 /root/working

 # mount -t ext2 -o loop /root/working /mnt

(Note that obsolete versions of mount may have problems with this. If your mount doesn't work, I strongly suggest you get the latest version, or at least version 2.7, as some very old versions have

severe security bugs.)

Using loopback means that if and when you completely destroy the file system, all you have to do is copy the raw partition back and start over.

7. Preparing to write data elsewhere

If you chose to go this route, you need to make sure you have a rescue partition somewhere -- a place to write out new copies of the files you recover. Hopefully, your system has several partitions on it:

perhaps a root, a /usr, and a /home. With all these to choose from, you should have no problem: just create a new directory on one of these.

If you have only a root partition, and store everything on that, things are slightly more awkward. Perhaps you have an MS-DOS or Windows partition you could use? Or you have the ramdisk driver in your kernel, maybe as a module?

To use the ramdisk (assuming a kernel more recent than 1.3.48), say the following:

 # dd if=/dev/zero of=/dev/ram0 bs=1k count=2048

 # mke2fs -v -m 0 /dev/ram0 2048

 # mount -t ext2 /dev/ram0 /mnt

This creates a 2MB ramdisk volume, and mounts it on /mnt.

A short word of warning: if you use kerneld (or its replacement kmod in 2.2.x and later 2.1.x kernels) to automatically load and unload kernel modules, then don't unmount the ramdisk until you've copied any

files from it onto non-volatile storage. Once you unmount it, kerneld assumes it can unload the module (after the usual waiting period), and once this happens, the memory gets re-used by other parts of the

kernel, losing all the painstaking hours you just spent recovering your data.

If you have a Zip, Jaz, or LS-120 drive, or something similar, it would probably be a good choice for a rescue partition location. Otherwise, you'll just have to stick with floppies.

The other thing you're likely to need is a program, which can read the necessary data from the middle of the partition device. At a pinch, dd will do the job, but to read from, say, 600 MB into an 800 MB

partition, dd insists on reading but ignoring the first 600 MB. This takes a not inconsiderable amount of time, even on fast disks. My way round this was to write a program which will seek to the middle of the

partition.

It's called fsgrab; you can find the source package on my website

<http://pobox.com/~aaronc/tech/fsgrab-1.2.tar.gz> or on Metalab <http://metalab.unc.edu/pub/Linux/utils/file/> (and mirrors).

If you want to use this method, the rest of this mini-Howto assumes that you have fsgrab.

If none of the files you are trying to recover were more than 12 blocks long (where a block is usually one kilobyte), then you won't need fsgrab.

If you need to use fsgrab but don't want to download and build it, it is fairly straightforward to translate an fsgrab command-line to one for dd. If we have

 fsgrab -c count -s skip device

then the corresponding (but typically much slower) dd command is

 dd bs=1k if=device count=count skip=skip

I must warn you that, although fsgrab functioned perfectly for me, I can take no responsibility for how it performs. It was really a very quick and dirty kludge just to get things to work. For more details on the lack of warranty, see the `No Warranty' section in the COPYING file included with it (the GNU General Public License).

8. Finding the deleted inodes

The next step is to ask the file system which inodes have recently been freed. This is a task you can accomplish with debugfs. Start debugfs with the name of the device on which the file system is

stored:

debugfs /dev/hda5

If you want to modify the inodes directly, add a -w option to enable writing to the file system:

debugfs -w /dev/hda5

The debugfs command to find the deleted inodes is lsdel. So, type the command at the prompt:

debugfs: lsdel

After much wailing and grinding of disk mechanisms, a long list is piped into your favourite pager (the value of $PAGER). Now you'll want to save a copy of this somewhere else. If you have less, you can

type -o followed by the name of an output file. Otherwise, you'll have to arrange to send the output elsewhere. Try this:

 debugfs: quit

 # echo lsdel | debugfs /dev/hda5 > lsdel.out

Now, based only on the deletion time, the size, the type, and the numerical permissions and owner, you must work out which of these deleted inodes are the ones you want. With luck, you'll be able to spot them because they're the big bunch you deleted about five minutes ago. Otherwise, trawl through that list carefully.

I suggest that if possible, you print out the list of the inodes you want to recover. It will make life a lot easier.

9. Obtaining the details of the inodes

debugfs has a stat command which prints details about an inode. Issue the command for each inode in your recovery list. For example, if you're interested in inode number 148003, try this:

 debugfs: stat <148003>

 Inode: 148003 Type: regular Mode: 0644 Flags: 0x0 Version: 1

 User: 503 Group: 100 Size: 6065

 File ACL: 0 Directory ACL: 0

 Links: 0 Blockcount: 12

 Fragment: Address: 0 Number: 0 Size: 0

 ctime: 0x31a9a574 -- Mon May 27 13:52:04 1996

 atime: 0x31a21dd1 -- Tue May 21 20:47:29 1996

 mtime: 0x313bf4d7 -- Tue Mar 5 08:01:27 1996

 dtime: 0x31a9a574 -- Mon May 27 13:52:04 1996

 BLOCKS:

 594810 594811 594814 594815 594816 594817

 TOTAL: 6

If you have a lot of files to recover, you'll want to automate this. Assuming that your lsdel list of inodes to recover in is in lsdel.out, try this:

 # cut -c1-6 lsdel.out | grep "[0-9]" | tr -d " " > inodes

This new file inodes contains just the numbers of the inodes to recover, one per line. We save it because it will very likely come in handy later on. Then you just say:

 # sed 's/^.*$/stat <\0>/' inodes | debugfs /dev/hda5 > stats

and stats contains the output of all the stat commands.

10. Recovering data blocks

This part is either very easy or distinctly less so, depending on whether the file you are trying to recover is more than 12 blocks long.

10.1. Short files

If the file was no more than 12 blocks long, then the block numbers of all its data are stored in the inode: you can read them directly out of the stat output for the inode. Moreover, debugfs has a command

which performs this task automatically. To take the example we had before, repeated here:

 debugfs: stat <148003>

 Inode: 148003 Type: regular Mode: 0644 Flags: 0x0 Version: 1

 User: 503 Group: 100 Size: 6065

 File ACL: 0 Directory ACL: 0

 Links: 0 Blockcount: 12

 Fragment: Address: 0 Number: 0 Size: 0

 ctime: 0x31a9a574 -- Mon May 27 13:52:04 1996

 atime: 0x31a21dd1 -- Tue May 21 20:47:29 1996

 mtime: 0x313bf4d7 -- Tue Mar 5 08:01:27 1996

 dtime: 0x31a9a574 -- Mon May 27 13:52:04 1996

 BLOCKS:

 594810 594811 594814 594815 594816 594817

 TOTAL: 6

This file has six blocks. Since this is less than the limit of 12, we get debugfs to write the file into a new location, such as /mnt/recovered.000:

 debugfs: dump <148003> /mnt/recovered.000

Of course, this can also be done with fsgrab; I'll present it here as an example of using it:

fsgrab -c 2 -s 594810 /dev/hda5 > /mnt/recovered.000

fsgrab -c 4 -s 594814 /dev/hda5 >> /mnt/recovered.000

With either debugfs or fsgrab, there will be some garbage at the end of /mnt/recovered.000, but that's fairly unimportant. If you want to get rid of it, the simplest method is to take the Size field from the

inode, and plug it into the bs option in a dd command line:

 # dd count=1 if=/mnt/recovered.000 of=/mnt/resized.000 bs=6065

Of course, it is possible that one or more of the blocks that made up your file has been overwritten. If so, then you're out of luck: that block is gone forever. (But just imagine if you'd unmounted sooner!)

10.2. Longer files

The problems appear when the file has more than 12 data blocks. It pays here to know a little of how UNIX file systems are structured. The file's data is stored in units called `blocks'. These blocks may

be numbered sequentially. A file also has an `inode', which is the place where information such as owner, permissions, and type are kept. Like blocks, inodes are numbered sequentially, although they have a

different sequence. A directory entry consists of the name of the file and an inode number.

But with this state of affairs, it is still impossible for the kernel to find the data corresponding to a directory entry. So the inode also stores the location of the file's data blocks, as follows:

· The block numbers of the first 12 data blocks are stored directly in the inode; these are sometimes referred to as the direct blocks.

· The inode contains the block number of an indirect block. An indirect block contains the block numbers of 256 additional data blocks.

· The inode contains the block number of a doubly indirect block. A doubly indirect block contains the block numbers of 256 additional indirect blocks.

· The inode contains the block number of a triply indirect block. A triply indirect block contains the block numbers of 256 additional doubly indirect blocks.

Read that again: I know it's complex, but it's also important.

Now, the kernel implementation for all versions up to and including 2.0.36 unfortunately zeroes all indirect blocks (and doubly indirect blocks, and so on) when deleting a file. So if your file was longer

than 12 blocks, you have no guarantee of being able to find even the numbers of all the blocks you need, let alone their contents.

The only method I have been able to find thus far is to assume that the file was not fragmented: if it was, then you're in trouble. Assuming that the file was not fragmented, there are several layouts

of data blocks, according to how many data blocks the file used:

 0 to 12

The block numbers are stored in the inode, as described above.

 13 to 268

After the direct blocks, count one for the indirect block, and then there are 256 data blocks.

 269 to 65804

As before, there are 12 direct blocks, a (useless) indirect block, and 256 blocks. These are followed by one (useless) doubly indirect block, and 256 repetitions of one (useless) indirect block and 256 data blocks.

 65805 or more

The layout of the first 65804 blocks is as above. Then follow one (useless) triply indirect block and 256 repetitions of a `doubly indirect sequence'. Each doubly indirect sequence consists of a (useless) doubly indirect block, followed by 256 repetitions of one (useless) indirect block and 256 data blocks.

Of course, even if these assumed data block numbers are correct, there is no guarantee that the data in them is intact. In addition, the longer the file was, the less chance there is that it was written to the file system without appreciable fragmentation (except in special circumstances).

You should note that I assume throughout that your blocksize is 1024 bytes, as this is the standard value. If your blocks are bigger, some of the numbers above will change. Specifically: since each block

number is 4 bytes long, blocksize/4 is the number of block numbers that can be stored in each indirect block. So every time the number 256 appears in the discussion above, replace it with blocksize/4. The

`number of blocks required' boundaries will also have to be changed.

Let's look at an example of recovering a longer file.

 debugfs: stat <1387>

 Inode: 148004 Type: regular Mode: 0644 Flags: 0x0 Version: 1

 User: 503 Group: 100 Size: 1851347

 File ACL: 0 Directory ACL: 0

 Links: 0 Blockcount: 3616

 Fragment: Address: 0 Number: 0 Size: 0

 ctime: 0x31a9a574 -- Mon May 27 13:52:04 1996

 atime: 0x31a21dd1 -- Tue May 21 20:47:29 1996

 mtime: 0x313bf4d7 -- Tue Mar 5 08:01:27 1996

 dtime: 0x31a9a574 -- Mon May 27 13:52:04 1996

 BLOCKS:

 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8583

 TOTAL: 14

There seems to be a reasonable chance that this file is not fragmented: certainly, the first 12 blocks listed in the inode (which are all data blocks) are contiguous. So, we can start by retrieving those blocks:

