Load Balance and Fail-Over Best Practices
Abstract:

The purpose of this document is to define best practices that should be taken into consideration when an application is load balanced or setup for failover. The scope of this document is limited to application load balancing and failover. Datasource load balancing and failover is not considered in the scope of this document.

This white paper only relates to load balancing and fail over issues and thus is at a high level of granularity. (See the Enterprise Java Programming Model standard for additional information.)

Load Balancing and Fail Over is a standard for Key Applications. Other applications may also require load balancing and/or fail over on a case by case basis determined by load and performance.

For applications on distributed WAS machines, the current Corporate solution is to use BigIP pooling. For zOS, WAS workload management solutions and BigIP pooling are used.

Detail:

Assumptions

This model assumes a thin client. It fits within the context of our typical Java applications that use HTML on clients and Java Servlet technology on the server side.

In all distributed Websphere application, all failover and load balancing functions are handled by the BigIP.

By default load balanced solutions implement server/IP affinity (stickiness). This implies that requests from a particular client are routed back to the same JVM until the client's session (HttpSession) times out. That is, a user uses the same server during the life of their session.

If the application requires seamless failover regardless of server affinity or if the application needs to eliminate server affinity for other reasons, then the following steps can be taken:

· Reducing the amount of information actually needed in the session

· Persisting the session to a database

· This can be a performance constraint.

· Continuously passing all required information as part of the request object.

· Be careful not to violate any privacy or security constraints

· Hidden form objects

· Protect the application from users doctoring hidden attributes to retrieve sensitive information. (E.G. If an application id is returned in a hidden field can the user increment / decrement or change that value to get a unauthorized application?)

· Search requests could be repeated for each submission with only the pertinent results being displayed

If an application requires fail over but not load balancing then the application will be configured for load balancing with all requests going to one JVM and a "hot" backup available in case of fail over. A "hot" backup is a JVM configured to not handle any normal load. The BigIP will automatically failover to the “hot” backup in case of failure of the primary JVM.

Programming Model

The Enterprise Java Programming Model addresses three areas: transactions, lazy initialization and object caching.

Transactions

First let us consider transactions. For clarity we will use Kaseem et al's definition of transactions. "Transactions divide an application into a series of indivisible or 'atomic' units of work. A system that supports transactions ensures that each unit of work fully completes without interference from the other processes. If the unit of work can be completed in its entirety, it is committed. Otherwise, the system completely undoes (rolls back) whatever work the unit had performed".

The Enterprise Java Programming Model follows guidelines for transactions in an J2EE environment. Within the J2EE environment a "transaction should start with the reception of a user request and end with the return of the response. The transaction should not stay active while the user is working on the data contained in the response".

More specifically, the Enterprise Java Programming Model follows the J2EE guideline for transactions in terms of what is persisted. From the user's perspective the unit of work could span multiple screen interactions.

The needs of a particular application determine the portion of a user's session state that is persisted. This decision is based on failure probability and the cost of the user re-entering information versus the cost of storing pending information.

The cost of storing pending information includes the programming time to create and maintain pending information in the persistence store.

Lazy Initialization

Additionally, the preferred model utilizes lazy initialization. Lazy initialization is a technique that delays instantiation of objects until they are needed. Lazy initialization improves performance as well as simplifies development concerns related to fail over. Lazy initialization is, however, just a technique that tells the application when to cache some data. Once the data is cached all of the concerns over synchronization of that data across the JVMs in the next section still apply.

Caching

Finally, the Enterprise Java Programming Model gives developers the option of utilizing an object caching mechanism to improve performance. If developers choose to utilize an object caching mechanism, it is recommended that they understand the factors involved in caching objects. This understanding can be gained by studying Grand's Cache Management Pattern.

Factors to consider include synchronization of the cache with data stores as well as with other JVMs. If an application does not have exclusive rights to update an object's persistence store, it may be most cost effective to get a fresh copy of the object with each client interaction. You should however, first add a timestamp to the record in the persistence store which automatically updates when a record is changed. You can then check the timestamp and not incur the penalty associated with unnecessarily reloading the data.

Cache synchronization across multiple JVMs can become an issue in a load balanced application. If it is required for an application to have synchronized cache across multiple JVMs, it is recommended that an existing pattern that is known to work is used.

The current patterns that are used include:

· Publish/Subscribe

· http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/basics.html#1023551
· Multicasting

· This is used currently by multiple applications at Corporate in a “homegrown” way. Properties are used to identify the webserver names of all JVMs in a pool. A message that originates at one JVM is then sent to all other JVMs with a specific userAction so the other JVMs know not to send on the message and to only refresh their own cache.

· Invalidation

· Invalidation involves caches that are told that all, or a portion/piece of their content is invalid via a notification and therefore remove/refresh it.

Logging Best Practices for Load Balance Applications

· Include the server name in the emails that are sent out to let the support team when an error occurs so they know which logs to check.

· Add an “Easter Egg” to the HTML pages to indicate to the user what server they are on if necessary.

· Set the maximum log size and the rotation timing so that logs do not roll every 3 minutes.

· Determine which information is necessary to log so that you can find important information when it is necessary.

Load Balancing and Fail Over Scenarios

Since the proposed programming model is partly driven by load balancing and fail over concerns, next we will consider load balancing and fail over scenarios.

If the solution implemented for load balancing implements server/IP affinity (stickiness), requests go back to the same server while the client's HttpSession is active, and the impact of load balancing on the programming model is minimal. For example, caching can be used as an effective means to improve performance. The proposed programming model does not address state that is global to an application for brevity's sake.

When the application server fails, the state of the JVM is lost and we rely on the DBMS to recreate the starting point of the user for their next transaction. There are two scenarios related to fail over. The application server fails while a client's transaction is in process or it can fail between client transactions.

First let us consider if the application server fails between transactions. When the application comes up on the new server, the user's HttpSession is lost except for what has been persisted on the DBMS. Lazy initialization minimizes the effect of recreating state in the new JVM.

Depending on the needs and design of the application there may be an impact on the user. The user may need to be notified that a failure has occurred. They would then navigate back to their unit of work and enter any of their session state that has not been persisted. In the case of an application that was not using server/IP affinity, the user would never know that something had failed between the transactions and would continue to work right where they had left off. They might be required to enter any information that was not stored as part of the last transaction, however in this case because server/IP affinity is not being used that information should be minimal.

If the application server fails within the scope of a transaction, the data that would normally be persisted within the scope of the transaction will be lost. Otherwise, the scenario is identical to application server failure outside the scope of a transaction. This would be the same scenario for an application that was not using server/IP affinity because the current unit of work would normally be lost. If all of the required information was part of the session, the unit of work could simply continue on the JVM that was passed the request upon failure of the initial JVM.

Deployment Considerations

Deployment practices need to be considered when using Load Balancing and failover. For example, a user can choose to only deploy 1 JVM at a time and changes appear mostly transparent to the end user, if you are using server affinity. It can also be decided that the entire application needs to be brought down and all JVMs deployed together. This is normally the pattern followed when a database change or other similar change is happening at the same time that would cause old code to fail when the change occurred.

There is a difference in deployments between distributed application JVMs and those running on zOS. In the distributed environment there are multiple JVMs created and each is deployed separately. On zOS there is 1 JVM name and there are multiple servants created for that 1 JVM. Therefore, deploying 1 JVM at a time is not an option unless there are multiple JVMs with multiple servants.

Configuration Considerations

It is necessary to consider the impact of infrastructure changes, such as server moves, that can affect the application regarding configuration. If your application is dependent on IP address or server name, then as JVMs are moved by the infrastructure, problems can arise.

The application should be written in such a way that all the EAR files for each JVM are identical except for the name of the file if there are multiple JVMs with different names. Best practices that allow for the EAR to be the same across JVMs include:

· Find configuration information based on the current machine name.

· Provide DNS alias for each JVM and refer to those aliases in your configuration.

· Use a JNDI lookup for each JVM.

· Set an environment variable to note the current machine similar to how IafConfigSuffix is used to determine environment.

It is sometimes important in configuration to consider how other JVMs would be found in case of needing to communicate with them. Publish/subscribe is a good pattern to use when this is necessary such as when operating multiple servants under 1 JVM in zOS.
 SUBJECT * MERGEFORMAT Page 1 of 1

