File System Guide UNIX File System

The file system is the primary means of file storage in UNIX. Each file system houses directories, which, as a group, can be placed almost anywhere in the UNIX directory tree. The topmost level of the directory tree, the root directory, begins at /. Subdirectories nested below the root directory may traverse as deep as you like so long as the longest absolute path is less than 1,024 characters.
With the proliferation of vendor-enhanced versions of UNIX, you will find a number of "enhanced" file systems :
· SunOS 4.1.x, which uses 4.2
· Solaris, which uses ufs
· Linux, which uses ext2
· IRIX, which uses efs and xfs
Note that the ufs and 4.2 file systems are actually the same.
A file system, however, is only a part of the grand scheme of how UNIX keeps its data on disk. At the top level, you'll find the disks themselves. These disks are then broken into partitions, each varying in size depending on the needs of the administrator. It is on each partition that the actual file system is laid out. Within the file system, you'll find directories, subdirectories, and, finally, the individual files.
Although you will rarely have to deal with the file system at a level lower than the individual files stored on it, it is critical that you understand two key concepts: inodes and the superblock.
inodes
An inode maintains information about each file. Depending on the type of file system, the inode can contain upwards of 40+ pieces of information. Most of it, however, is only useful to the kernel and doesn't concern us. The fields that do concern us are
	mode
	The permission mask and type of file.

	link count
	The number of directories that contain an entry with this inode number.

	user ID
	The ID of the file's owner.

	group ID
	The ID of the file's group.

	size
	Number of bytes in this file.

	access time
	The time at which the file was last accessed.

	mod time
	The time at which the file was last modified.

	inode time
	The time at which this inode structure was last modified.

	block list
	A list of disk block numbers which contain the first segment of the file.

	indirect list
	A list of other block lists.

The mode, link count, user ID, group ID, size, and access time are used when generating file listings. Note that the inode does not contain the file's name. That information is held in the directory file (see below for details).
Superblocks
This is the most vital information stored on the disk. It contains information on the disk's geometry (number of heads, cylinders, and so on), the head of the inode list, and free block list. Because of its importance, the system automatically keeps mirrors of this data scattered around the disk for redundancy. You only have to deal with superblocks if your file system becomes heavily corrupted.
Types of Files
Files come in 8 flavors:
· Normal Files
· Directories
· Hard Links
· Symbolic links
· Sockets
· Named Pipes
· Character Devices
· Block Devices
Normal Files These are the files you use the most. They can be either text or binary files; however, their internal structure is irrelevant from a System Administrator standpoint. A file's characteristics are specified by the inode in the file system that describes it.
Directories These are a special kind of file that contains a list of other files. Although there is a one-to-one mapping of inode to disk blocks, there can be a many-to-one mapping from directory entry to inode. When viewing a directory listing using the ls -l command, you can identify directories by their permissions starting with the d character.
Hard Links
A hard link is actually a normal directory entry except instead of pointing to a unique file , it points to an already existing file . This gives the illusion that there are two identical files when you do a directory listing. Because the system sees this as just another file, it treats it as such. This is most apparent during backups because hard-linked files get backed up as many times as there are hard links to them. Because a hard link shares an inode, it cannot exist across file systems. Hard links are created with the ln command.
Symbolic Links
A symbolic link (sometimes referred to as a symlink) differs from a hard link because it doesn't point to another inode but to another filename. This allows symbolic links to exist across file systems as well as be recognized as a special file to the operating system. You will find symbolic links to be crucial to the administration of your file systems, especially when trying to give the appearance of a seamless system when there isn't one. Symbolic links are created using the ln -s command. A common thing people do is create a symbolic link to a directory that has moved.
Sockets
Sockets are the means for UNIX to network with other machines. Typically, this is done using network ports; however, the file system has a provision to allow for inter-process communication through socket files. (A popular program that uses this technique is the X Windows system.)
Named Pipes
Similar to sockets, named pipes enable programs to communicate with one another through the file system. You can use the mknod command to create a named pipe. Named pipes are recognizable by their permissions settings beginning with the p character.
Character Devices
These special files are typically found in the /dev directory and provide a mechanism for communicating with system device drivers through the file system one character at a time. They are easily noticed by their permission bits starting with the c character. Each character file contains two special numbers, the major and minor. These two numbers identify which device driver that file communicates with.
Block Devices
Block devices also share many characteristics with character devices in that they exist in the /dev directory, are used to communicate with device drivers, and have major and minor numbers. The key difference is that block devices typically transfer large blocks of data at a time versus one character at a time. (A hard disk is a block device, whereas a terminal is a character device.) Block devices are identified by their permission bits starting with the b character.
Mounting and Unmounting File Systems
Power in UNIX stems from its flexibility in placing file systems anywhere in the directory tree. This feat is accomplished by mounting file systems.
Before you can mount a file system, you need to select a mount point. A mount point is the directory entry in the file system where the root directory of a different file system will overlay it. UNIX keeps track of mount points, and accesses the correct file system, depending on which directory the user is currently in. A mount point may exist anywhere in the directory tree.
While it is technically true that you can mount a file system anywhere in the directory tree, there is one place you will NOT want to mount it: the root directory. Remember that once a file system is mounted at a directory, that directory is overshadowed by the contents of the mounted file system. Hence, by mounting on the root directory, the system will no longer be able to see its own kernel or local configuration files. How long your system goes on before crashing depends on your vendor.
There is an exception to the rule. Some installation packages will mount a network file system to the root directory. This is done to give the installation software access to many packages that may not be able to fit on your boot disk. Unless you fully understand how to do this yourself, don't.

Creating File Systems
Now that you understand the nuances of maintaining a file system, it's time to understand how they are created. This section walks you through the three steps of:
· Picking the right kind of disk for your system
· Creating partitions
· Creating the file system
Disk Types
Although there are many different kinds of disks, UNIX systems have come to standardize on SCSI for workstations. Many PCs also sport SCSI interfaces, but because of the lower cost and abundance, you'll find a lot of IDE drives on UNIX PC's as well.
SCSI itself comes in a few different flavors now. There is regular SCSI, SCSI-2, SCSI-Wide, SCSI-Fast and Wide, and now SCSI-3. Although it is possible to mix and match these devices with converter cables, you may find it both easier on your sanity and your performance if you stick to one format. As of this writing, SCSI-2 is the most common interface.
When attaching your SCSI drive, there are many important points to remember.
· Terminate your SCSI chain. Forgetting to do this causes all sorts of non-deterministic behavior (a pain to track down). SCSI-2 requires active termination, which is usually indicated by terminators with LEDs on them.
· If a device claims to be self-terminating, you can take your chances, but you'll be less likely to encounter an error if you put a terminator on anyway.
· There is a limit of eight devices on a SCSI chain with the SCSI card counting as a device. Some systems may have internal SCSI devices, so be sure to check for those.
· Be sure all your devices have unique SCSI IDs. A common symptom of having two devices with the same ID is their tendency to frequently reset the SCSI chain. Of course, many devices simply won't work under those conditions.
· When adding or removing a SCSI disk, be sure to power the system down first. There is power running through the SCSI cables, and failing to shut them down first may lead to problems in the future.
Although SCSI is king of the workstation, PCs have another choice: IDE. IDE tends to be cheaper and more available than SCSI devices with many motherboards offering direct IDE support. The advantage of using this kind of interface is its availability as well as lower cost. They are also simpler and require less configuration on your part.
The down side to IDEs is that their simplicity comes at the cost of configurability and expandability. The IDE chain can only hold two devices, and not all motherboards come with more than one IDE chain. If your CD-ROM is IDE, you only have space for one disk. This is probably okay with a single person workstation, but as you can imagine, it's not going to fly well in a server environment. Another consideration is speed. SCSI was designed with the ability to perform I/O without the aid of the main CPU, which is one of the reasons it costs more. IDE, on the other hand, was designed with cost in mind. This resulted in a simplified controller; hence, the CPU takes the burden for working the drive.
While IDE did manage to simplify the PC arena, it did come with the limitation of being unable to handle disks greater than 540M. Various tricks were devised to circumvent this, however, the clean solution is now predominantly available. Known as EIDE (Enhanced IDE), it is capable of supporting disks up to 8G and can support up to 4 devices on one chain.
In weighing the pros and cons of EIDE versus SCSI in the PC environment, don't forget to think about the cost-to-benefit ratio. Having a high speed SCSI controller in a single person's workstation may not be as necessary as the user is convinced it is. Plus, with disks being released in 2+ gigabyte configurations, there is ample room on the typical IDE disk.
Once you have decided on the disk subsystem to install, read the documentation that came with the machine for instructions on physically attaching the disk to the system.

What Are Partitions and Why Do I Need Them?
Partitions are UNIX's way of dividing the disk into usable pieces. UNIX requires that there be at least one partition; however, you'll find that creating multiple partitions, each with a specific function, is often necessary.
The most visible reason for creating separate partitions is to protect the system from the users. The one required partition mentioned earlier is called the root partition. It is here that critical system software and configuration files (the kernel and mount tables) must reside. This partition must be carefully watched so that it never fills up. If it fills up, your system may not be able to come back up in the event of a system crash. Because the root partition is not meant to hold the users' data, you must create separate partitions for the users' home directories, temporarily files, and so forth. This enables their files to grow without the worry of crowding out the key system files.
Dual boot configurations are becoming another common reason to partition, especially with the ever-growing popularity of Linux. You may find your users wanting to be able to boot to either Windows or Linux; therefore, you need to keep at least two partitions to enable them to do this.
The last, but certainly not least, reason to partition your disks is the issue of backups. Backup software often works by dumping entire partitions onto tape. By keeping the different types of data on separate partitions, you can be explicit about what gets backed up and what doesn't. For example, daily backup of the system software isn't necessary, but backups of home directories are. By keeping the two on separate partitions, you can be more concise in your selection of what gets backed up and what doesn't.
Another example relates more to company politics. It may be possible that one group does not want their data to be backed up to the same tape as another group's. (Note: common sense doesn't always apply to inter-group politicsÉ) By keeping the two groups on separate partitions, you can exclude one from your normal backups and exclude the others during your special backups.
Which Partitions To Create As I mentioned earlier, the purpose of creating partitions is to separate the users from the system areas. So how many different partitions need to be created? While there is no right answer for every installation, here are some guidelines to take into account.
You always need a root partition. In this partition, you'll have your /bin, /etc, and /sbin directories at the very least. Depending on your version of UNIX, this could require anywhere from 30 to 100 megabytes.
	/tmp
	The /tmp directory is where your users, as well as programs, store temporarily files. The usage of this directory can quickly get out of hand, especially if you run a quota-based site. By keeping it a separate partition, you do not need to worry about its abuse interfering with the rest of the system. Many operating systems automatically clear the contents of /tmp on boot. Size /tmp to fit your site's needs. If you use quotas, you will want to make it a little larger, whereas sites without quotas may not need as much space.

	
	Under Solaris, you have another option when setting up /tmp. Using the tmpfs filesystem, you can have your swap space and /tmp partition share the same physical location on disk. While it appears to be an interesting idea, you'll quickly find that it isn't a very good solution, especially on a busy system. This is because as more users do their work, more of /tmp will be used. Of course, if there are more users, there is a greater memory requirement to hold them all. The competition for free space can become very problematic.

	/var
	The /var directory is where the system places its spool files (print spool, incoming/outgoing mail queue, and so on) as well as system log files. Because of this, these files constantly grow and shrink with no warning. Especially the mail spool. Another possibility to keep in mind is the creation of a separate partition just for mail. This enables you to export the mail spool to all of your machines without having to worry about your print spools being exported as well. If you use a backup package that requires its own spool space, you may wish to keep this a separate partition as well.

	/home
	The /home directory is where you place your users' account directories. You may need to use multiple partitions to keep your home directories (possibly broken up by department) and have each partition mount to /home/dept where dept is the name of the respective department.

	/usr
	The /usr directory holds noncritical system software, such as editors and lesser used utilities. Many sites hold locally compiled software in the /usr/local directory where they either export it to other machines, or mount other machines' /usr/local to their own. This makes it easy for a site to maintain one /usr/local directory and share it amongst all of its machines. Keeping this a separate partition is a good idea since local software inevitably grows.

	swap
	This isn't a partition you actually keep files on, but it is key to your system's performance. The swap partition should be allocated and swapped to instead of using swap files on your normal file system. This enables you to contain all of your swap space in one area that is out of your way. A good guideline for determining how much swap space to use is to double the amount of RAM installed on your system.

TIP: Several new versions of UNIX are now placing locally compiled software in the /opt directory. Like /usr/local, this should be made a separate partition as well. If your system does not use /opt by default, you should make a symbolic link from there to /usr/local. The vice versa is true as well, if your system uses /opt, you should create a symbolic link from /usr/local to /opt.
To add to the confusion, the Redhat Distribution of Linux has brought the practice of installing precompiled software (RPMs) in the /usr/bin directory. If you are using Redhat, you may want to make your /usr directory larger since locally installed packages will consume that partition.

The Device Entry
Most implementations of UNIX automatically create the correct device entry when you boot it with the new drive attached. Once this entry has been created, you should check it for permissions. Only root should be given read/write access to it. If your backups run as a nonroot user, you may need to give group read access to the backup group. Be sure that no one else is in the backup group. Allowing world read/write access to the disk is the easiest way to have your system hacked, destroyed, or both.
Device entries under Linux IDE disks under Linux use the following scheme to name the hard disks:
/dev/hd[drive][partition]
Each IDE drive is lettered starting from a. So the primary disk on the first chain is a; the slave on the first chain is b; the primary on the secondary chain is c; and so on. Each disk's partition is referenced by number. For example, the third partition of the slave drive on the first chain is /dev/hdb3.
SCSI disks use the same scheme except instead of using /dev/hd as the prefix, /dev/sd is used. So to refer to the second partition of the first disk on the SCSI chain, you would use /dev/sda2.
To refer to the entire disk, specify all the information except the partition. For example, to refer to the entire primary disk on the first IDE chain, you would use /dev/hda.
Device entries under IRIX SCSI disks under IRIX are referenced in either the /dev/dsk or /dev/rdsk directories. The following is the format:
/dev/[r]dsk/dksCdSP
where C is the controller number, S is the SCSI address, and P is the partition, s0,s1,s2, and so on. The partition name can also be vh for the volume header or vol to refer to the entire disk.
Device entries under Solaris The SCSI disks under Solaris are referenced in either the /dev/dsk or /dev/rdsk directories. The following is the format:
/dev/[r]dsk/cCtSd0sP
where C is the controller number, S is the SCSI address, and P is the partition number. Partition 2 always refers to the entire disk and label information. Partition 1 is typically used for swap.
Device entries under SunOS Disks under SunOS are referenced in the /dev directory. The following is the format:
/dev/sdTP
where T is the target number and P is the partition. Typically, the root partition is a, the swap partition is b, and the entire disk is referred to as partition c. You can have partitions from a through f.
An important aspect to note is an oddity with the SCSI target and unit numbering: Devices that are target three need to be called target zero, and devices that are target zero need to be called target three.
A Note About Formatting Disks
"Back in the old days," disks needed to be formatted and checked for bad blocks. The procedure of formatting entailed writing the head, track, and sector numbers in a sector preamble and a checksum in the postamble to every sector on the disk. At the same time, any sectors that were unusable due to flaws in the disk surface were marked and, depending on the type of disk, an alternate sector mapped into its place.
Thankfully, we have moved on.
Both SCSI and IDE disks now come pre-formatted from the factory. Even better, they transparently handle bad blocks on the disk and remap them without any assistance from the operating system.

CAUTION: You should NEVER attempt to low level format an IDE disk.
Doing so will make your day very bad as you watch the drive quietly kill itself. Be prepared to throw the disk away should you feel the need to low level format it.

Partitioning Disks and Creating File Systems
In this section, we will cover the step by step procedure for partitioning disks under Linux, IRIX, SunOS, and Solaris. Since the principles are similar across all platforms, each platform will also cover another method of determining how a disk should be partitioned up depending on its intended usage.
Linux To demonstrate how partitions are created under Linux, we will setup a disk with a single user workstation in mind. It will need not only space for system software, but for application software and the user's home directories.
Creating Partitions For this example, we'll create the partitions on a 1.6 GB IDE disk located on /dev/hda. This disk will become the boot device for a single user workstation. We will create the boot /usr, /var, /tmp, /home, and swap partitions.
During the actual partitioning, we don't name the partitions. Where the partitions are mounted is specified with the /etc/fstab file. Should we choose to mount them in different locations later on, we could very well do that. However, by keeping the function of each partition in mind, we have a better idea of how to size them.
A key thing to remember with the Linux fdisk command is that it does not commit any changes made to the partition table to disk until you explicitly do so with the w command.
With the drive installed, we begin by running the fdisk command:
fdisk /dev/hda
This brings us to the fdisk command prompt. We start by using the p command to print what partitions are currently on the disk.
 Command (m for help): p

Disk /dev/hda: 64 heads, 63 sectors, 786 cylinders

Units = cylinders of 4032 * 512 bytes

Device Boot Begin Start End Blocks Id System

Command (m for help):
We see that there are no partitions on the disk. With 1.6 GB of space, we can be very liberal with allocating space to each partition. Keeping this policy in mind, we begin creating our partitions with the n command:
 Command (m for help): n

e extended

p primary partition (1-4)

p

Partition number (1-4): 1

First cylinder (1-786): 1

Last cylinder or +size or +sizeM or +sizeK ([1]-786): +50M

Command (m for help):
The 50 MB partition we just created becomes our root partition. Because it is the first partition, it is referred to as /dev/hda1. Using the p command, we see our new partition:
 Command (m for help): p

Disk /dev/hda: 64 heads, 63 sectors, 786 cylinders

Units = cylinders of 4032 * 512 bytes

Device Boot Begin Start End Blocks Id System

/dev/hda1 1 1 26 52384+ 83 Linux native

Command (m for help):
With the root partition out of the way, we will create the swap partition. Our sample machine has 32 MB of RAM and will be running X-Windows along with a host of development tools. It is unlikely that the machine will get a memory upgrade for a while, so we'll allocate 64 MB to swap.
 Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

Partition number (1-4): 2

First cylinder (27-786): 27

Last cylinder or +size or +sizeM or +sizeK ([27]-786): +64M

Command (m for help):
Because this partition is going to be tagged as swap, we need to change its file system type to swap using the t command.
 Command (m for help): t

Partition number (1-4): 2

Hex code (type L to list codes): 82

Changed system type of partition 2 to 82 (Linux swap)

Command (m for help):
Because of the nature of the user, we know that there will be a lot of local software installed on this machine. With that in mind, we'll create /usr with 500 MB of space.
 Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

Partition number (1-4): 3

First cylinder (60-786): 60

Last cylinder or +size or +sizeM or +sizeK ([60]-786): +500M
If you've been keeping your eyes open, you've noticed that we can only have one more primary partition to use, but we want to have /home, /var, and /tmp to be in separate partitions. How do we do this?
Extended partitions.
The remainder of the disk is created as an extended partition. Within this partition, we can create more partitions for use. Let's create this extended partition:
 Command (m for help): n

Command action

e extended

p primary partition (1-4)

e

Partition number (1-4): 4

First cylinder (314-786): 314

Last cylinder or +size or +sizeM or +sizeK ([314]-786): 786

Command (m for help):
We can now create /home inside the extended partition. Our user is going to need a lot of space, so we'll create a 500 MB partition. Notice that we are no longer asked whether we want a primary or extended partition.
 Command (m for help): n

First cylinder (314-786): 314

Last cylinder or +size or +sizeM or +sizeK ([314]-786): +500M

Command (m for help):
Using the same pattern, we create a 250 MB /tmp and a 180 MB /var partition.
 Command (m for help): n

First cylinder (568-786): 568

Last cylinder or +size or +sizeM or +sizeK ([568]-786): +250M

Command (m for help): n

First cylinder (695-786): 695

Last cylinder or +size or +sizeM or +sizeK ([695]-786): 786

Command (m for help):
Notice on the last partition we created that I did not specify a size, but instead specified the last track. This is to ensure that all of the disk is used.
Using the p command, we look at our final work:
 Command (m for help): p

Disk /dev/hda: 64 heads, 63 sectors, 786 cylinders

Units = cylinders of 4032 * 512 bytes

Device Boot Begin Start End Blocks Id System

/dev/hda1 1 1 26 52384+ 83 Linux native

/dev/hda2 27 27 59 66528 82 Linux swap

/dev/hda3 60 60 313 512064 83 Linux native

/dev/hda4 314 314 786 953568 5 Extended

/dev/hda5 314 314 567 512032+ 83 Linux native

/dev/hda6 568 568 694 256000+ 83 Linux native

/dev/hda7 695 695 786 185440+ 83 Linux native

Command (m for help):
Everything looks good. To commit this configuration to disk, we use the w command:
 Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

(Reboot to ensure the partition table has been updated.)

Syncing disks.
Reboot the machine to ensure that the partition has been updated and you're done creating the partitions.
Creating File Systems in Linux Creating a partition alone isn't very useful. In order to make it useful, we need to make a file system on top of it. Under Linux, this is done using the mke2fs command and the mkswap command.
To create the file system on the root partition, we use the following commands:
mke2fs /dev/hda1
The program only takes a few seconds to run and generates output similar to this:
 mke2fs 0.5b, 14-Feb-95 for EXT2 FS 0.5a, 95/03/19

128016 inodes, 512032 blocks

25601 blocks (5.00%) reserved for the super user

First data block=1

Block size=1024 (log=0)

Fragment size=1024 (log=0)

63 block groups

8192 blocks per group, 8192 fragments per group

2032 inodes per group

Superblock backups stored on blocks:

8193,16385,24577,32769,40961,49153,57345,65537,73729,

81921,90113,98305,106497,114689,122881,131073,139265,147457,

155649,163841,172033,180225,188417,196609,204801,212993,221185,

229377,237569,245761,253953,262145,270337,278529,286721,294913,

303105,311297,319489,327681,335873,344065,352257,360449,368641,

376833,385025,393217,401409,409601,417793,425985,434177,442369,

450561,458753,466945,475137,483329,491521,499713,507905

Writing inode tables: done

Writing superblocks and file system accounting information: done
You should make a note of these superblock backups and keep them in a safe place. Should the day arise that you need to use fsck to fix a superblock gone bad, you will want to know where the backups are.
Simply do this for all of the partitions, except for the swap partition.
To create the swap file system, you need to use the mkswap command like this:
mkswap /dev/hda2
Replace /dev/hda2 with the partition you chose to make your swap space.
The result of the command will be similar to:
Setting up swapspace, size = 35090432 bytes
And the swap space is ready.
To make the root file system bootable, you need to install the lilo boot manager. This is part of all the standard Linux distributions, so you shouldn't need to hunt for it on the Internet.
Simply modify the /etc/lilo.conf file so that /dev/hda1 is set to be the boot disk and run:
lilo
The resulting output should look something like:
Added linux *
where linux is the name of the kernel to boot, as specified by the name= field in /etc/lilo.conf.
SunOS In this example, we will be preparting a Seagate ST32550N as an auxiliary disk to an existing system. The disk will be divided into three partitions: one for use as a mail spool, one for use as a /usr/local, and the third as an additional swap partition.
Creating the partitions

CAUTION: The procedure for formatting disks is not the same for SunOS and Solaris. Read each section to note the differences.

Once a disk has been attached to the machine, you should verify its connection and SCSI address by running the probe-scsi command from the PROM monitor if the disk is attached to the internal chain, or the probe-scsi-all command to see all the SCSI devices on the system. When you are sure the drive is properly attached and verified to be functioning, you're ready to start accessing the drive from the OS.
After the machine has booted, run the dmesg command to collect the system diagnostic messages. You may want to pipe the output to grep so that you can easily find the information on disks. For example:
dmesg | grep sd
On our system this generated the following output:
 sd0: <SUN0207 cyl 1254 alt 2 hd 9 sec 36>

sd1 at esp0 target 1 lun 0

sd1: corrupt label - wrong magic number

sd1: Vendor 'SEAGATE', product 'ST32550N', 4194058 512 byte blocks

root on sd0a fstype 4.2

swap on sd0b fstype spec size 32724K

dump on sd0b fstype spec size 32712K
This result tells us that we have an installed disk on sd0 that the system is aware of and using. The information from the sd1 device is telling us that it found a disk, but it isn't usable because of a corrupt label. Don't worry about the error. Until we partition the disk and create file systems on it, the system doesn't know what to do with it, hence the error.
If you are using SCSI address 0 or 3, remember the oddity we mentioned earlier where device 0 needs to be referenced as 3 and device 3 needs to be referenced as 0.
Even though we do not have to actually format the disk, we do need to use the format program that come with SunOS because it also creates the partitions and writes the label to the disk.
To invoke the format program, simply run:
format sd1
where sd1 is the name of the disk we are going to partition.
The format program displays the following menu:
 FORMAT MENU:

disk - select a disk

type - select (define) a disk type

partition - select (define) a partition table

current - describe the current disk

format - format and analyze the disk

repair - repair a defective sector

show - translate a disk address

label - write label to the disk

analyze - surface analysis

defect - defect list management

backup - search for backup labels

quit

format>
We need to enter type at the format> prompt so that we can tell SunOS the kind of disk we have. The resulting menu looks something like:
 AVAILABLE DRIVE TYPES:

0. Quantum ProDrive 80S

1. Quantum ProDrive 105S

2. CDC Wren IV 94171-344

3. SUN0104

...

13. other

Specify disk type (enter its number):
Because we are adding a disk this machine has not seen before, we need to select option 13, other. This begins a series of prompts requesting the disk's geometry. Be sure to have this information from the manufacturer before starting this procedure.
The first question, Enter number of data cylinders: is actually a three-part question. After you enter the number of data cylinders, the program asks for the number of alternative cylinders and then the number of physical cylinders. The number of physical cylinders is the number your manufacturer provided you. Subtract two from there to get the number of data cylinders, and then just use the default value of 2 for the number of alternate cylinders.
Note that even though our sample drive actually rotates at 7200 rpm, we stick with the default of 3600 rpm because the software will not accept entering a higher speed. Thankfully, this doesn't matter because the operating system doesn't use the information.
Even though format reported that the disk was formatted, it really wasn't. It only acquired information needed to later write the label.
Now we are ready to begin preparations to partition the disk.
These preparations entail computing the amount each cylinder holds and then approximating the number of cylinders we want in each partition.
With our sample disk, we know that each cylinder is composed of 108 sectors on a track, with 11 tracks composing the cylinder.
From the information we saw in dmesg, we know that each block is 512 bytes long. Hence, if we want our mail partition to be 1 GB in size, we perform the following math to compute the necessary blocks:
1 gigabyte = 1048576 kilobytes

One cylinder = 108 sectors * 11 heads = 1188 blocks

1188 blocks = 594 kilobytes

1048576 / 594 = 1765 cylinders

1765 * 1188 = 2096820 blocks
Obviously, there are some rounding errors since the exact one GB mark occurs in the middle of a cylinder and we need to keep each partition on a cylinder boundary. 1,765 cylinders is more than close enough. The 1,765 cylinders translates to 2,096,820 blocks.
The new swap partition we want to make needs to be 64 MB in size. Using the same math as before, we find that our swap needs to be 130,680 blocks long. The last partition on the disk needs to fill the remainder of the disk. Knowing that we have a 2 GB disk, a 1 GB mail spool, and a 64 MB swap partition, this should leave us with about 960 MB for /usr/local.
Armed with this information, we are ready to tackle the partitioning. From the format> prompt, type partition to start the partitioning menu. The resulting screen looks something like this:
 format> partition

PARTITION MENU:

a - change 'a' partition

b - change 'b' partition

c - change 'c' partition

d - change 'd' partition

e - change 'e' partition

f - change 'f' partition

g - change 'g' partition

h - change 'h' partition

select - select a predefined table

name - name the current table

print - display the current table

label - write partition map and label to the disk

quit

partition>
To create our mail partition, we begin by changing partition a. At the partition> prompt, type a.
partition> a
This brings up a prompt for entering the starting cylinder and the number of blocks to allocate. Because this is going to be the first partition on the disk, we start at cylinder 0. Based on the math we did earlier, we know that we need 2,096,820 blocks.
 partition a - starting cyl 0, # blocks 0 (0/0/0)

Enter new starting cyl [0]: 0

Enter new # blocks [0, 0/0/0]: 2096820

partition>
Now we want to create the b partition, which is traditionally used for swap space. We know how many blocks to use based on our calculations, but we don't know which cylinder to start from.
To solve this, we simply display the current partition information for the entire disk using the p command:
partition> p

Current partition table (unnamed):

partition a - starting cyl 0, # blocks 2096820 (1765/0/0)

partition b - starting cyl 0, # blocks 0 (0/0/0)

partition c - starting cyl 0, # blocks 0 (0/0/0)

partition d - starting cyl 0, # blocks 0 (0/0/0)

partition e - starting cyl 0, # blocks 0 (0/0/0)

partition f - starting cyl 0, # blocks 0 (0/0/0)

partition g - starting cyl 0, # blocks 0 (0/0/0)

partition h - starting cyl 0, # blocks 0 (0/0/0)

partition>
We can see that partition a is allocated with 2,096,820 blocks and is 1,765 cylinders long. Because we don't want to waste space on the disk, we start the swap partition on cylinder 1765.
(Remember to count from zero!)
partition> b

partition b - starting cyl 0, # blocks 0 (0/0/0)

Enter new starting cyl [0]: 1765

Enter new # blocks [0, 0/0/0]: 130680

partition>
Before we create our last partition, we need to take care of some tradition first, namely partition c. This is usually the partition that spans the entire disk. Before creating this partition, we need to do a little math.
108 cylinders x 11 heads x 3508 data cylinders = 4167504 blocks
Notice that the number of blocks we compute here does not match the number actually on the disk. This number was computed based on the information we entered when giving the disk type information.
It is important that we remain consistent.
Since the c partition spans the entire disk, we specify the starting cylinder as 0. Creating this partition should look something like this:
partition> c

partition c - starting cyl 0, # blocks 0 (0/0/0)

Enter new starting cyl [0]: 0

Enter new # blocks [0, 0/0/0]: 4167504

partition>
We have only one partition left to create: /usr/local. Because we want to fill the remainder of the disk, we need to do one last bit of math to compute how many blocks are still free.
This is done by taking the size of partition c (the total disk) and subtracting the sizes of the existing partitions. For our example, this works out to be:
4167504 - 2096820 - 130680 = 1940004 remaining blocks
Now we need to find out which cylinder to start from.
To do so, we run the p command again:
partition> p

Current partition table (unnamed):

partition a - starting cyl 0, # blocks 2096820 (1765/0/0)

partition b - starting cyl 1765, # blocks 130680 (110/0/0)

partition c - starting cyl 0, # blocks 4167504 (3508/0/0)

partition d - starting cyl 0, # blocks 0 (0/0/0)

partition e - starting cyl 0, # blocks 0 (0/0/0)

partition f - starting cyl 0, # blocks 0 (0/0/0)

partition g - starting cyl 0, # blocks 0 (0/0/0)

partition h - starting cyl 0, # blocks 0 (0/0/0)

partition>
To figure out which cylinder to start from, we add the number of cylinders used so far. Remember not to add the cylinders from partition c since it encompasses the entire disk.
1765 + 110 = 1875
Now that we know which cylinder to start from and how many blocks to make it, we create our last partition.
partition> d

partition d - starting cyl 0, # blocks 0 (0/0/0)

Enter new starting cyl [0]: 1875

Enter new # blocks [0, 0/0/0]: 1940004

partition>
Congratulations! You've made it through the ugly part. Before we can truly claim victory, we need to commit these changes to disk using the label command. When given the prompt, Ready to label disk, continue? simply answer y.
partition> label

Ready to label disk, continue? y

partition>
To leave the format program, type quit at the partition> prompt, and then quit again at the format> prompt.
Creating File Systems Now comes the easy part. Simply run the newfs command on all the partitions we created except for the swap partition and the entire disk partition.
Be sure to note the superblock backups. This is critical information when fsck discovers heavy corruption in your file system. Remember to add your new entries into /etc/fstab if you want them to automatically mount on boot.
If you created the first partition with the intention of making it bootable, you have a few more steps to go. First, mount the new file system to /mnt.
mount /dev/sd1a /mnt
Once the file system is mounted, you need to clone your existing boot partition using the dump command like this:
cd /mnt

dump 0f - / | restore -rf -
With the root partition cloned, use the installboot command to make it bootable:
/usr/kvm/mdec/installboot /mnt/boot /usr/kvm/mdec/bootsd /dev/rsd1a
Be sure to test your work by rebooting and making sure everything mounts correctly. If you created a bootable partition, be sure you can boot from it now. Don't wait for a disaster to find out whether or not you did it right.
Solaris For this example, we are partitioning a disk that is destined to be a web server for an intranet. We need a minimal root partition, adequate swap, tmp, var, and usr space, and a really large partition, which we'll call /web. Because the web logs will remain on the /web partition, and there will be little or no user activity on the machine, /var and /tmp will be set to smaller values. /usr will be a little larger because it may be destined to house web development tools.
Creating partitions

TIP: In another wondrous effort on its part to be just a little different, Sun has decided to call partitions "slices." With the number of documents regarding the file system so vast, you'll find that not all of them have been updated to use this new term, so don't be confused by the mix of "slices" with "partitions"--they are both the same.

Once a disk has been attached to the machine, you should verify its connection and SCSI address by running the probe-scsi command from the PROM monitor if the disk is attached to the internal SCSI chain, probe-scsi-all to list all the SCSI devices on the system Once this shows that the drive is properly attached and verified to be functioning, you're ready to start accessing the drive from the OS. Boot the machine and login as root.
In order to find the device name, we are going to use for this, we again use the dmesg command.
dmesg | grep sd

...

sd1 at esp0: target 1 lun 0

sd1 is /sbus@1,f8000000/esp@0,800000/sd@1,0

WARNING: /sbus@1,f8000000/esp@0,800000/sd@1,0 (sd1):

corrupt label - wrong magic number

Vendor 'SEAGATE', product 'ST32550N', 4194058 512 byte blocks

...
From this message, we see that our new disk is device /dev/[r]dsk/c0t1d0s2. The disk hasn't been set up for use on a Solaris machine before, which is why we received the corrupt label error.
If you recall the layout of Solaris device names, you'll remember that the last digit on the device name is the partition number. Noting that, we see that Solaris refers to the entire disk in partition 2, much the same way SunOS refers to the entire disk as partition c.
Before we can actually label and partition the disk, we need to create the device files. This is done with the drvconfig and disks commands. They should be invoked with no parameters:
drvconfig ; disks
Now that the kernel is aware of the disk, we are ready to run the format command to partition the disk.
format /dev/rdsk/c0t1d0s2
This brings up the format menu as follows:
FORMAT MENU:

disk - select a disk

type - select (define) a disk type

partition - select (define) a partition table

current - describe the current disk

format - format and analyze the disk

repair - repair a defective sector

label - write label to the disk

analyze - surface analysis

defect - defect list management

backup - search for backup labels

verify - read and display labels

save - save new disk/partition definitions

inquiry - show vendor, product and revision

volname - set 8-character volume name

quit

format>
To help the format command with partitioning, we need to tell it the disk's geometry by invoking the type command at the format> prompt. We will then be asked to select what kind of disk we have. Because this is the first time this system is seeing this disk, we need to select other. This should look something like this:
format> type

AVAILABLE DRIVE TYPES:

0. Auto configure

1. Quantum ProDrive 80S

2. Quantum ProDrive 105S

3. CDC Wren IV 94171-344

. . .

16. other

Specify disk type (enter its number): 16
The system now prompts for the number of data cylinders. This is two less than the number of cylinders the vendor specifies because Solaris needs two cylinders for bad block mapping.
Enter number of data cylinders: 3508

Enter number of alternate cylinders[2]: 2

Enter number of physical cylinders[3510]: 3510
The next question can be answered from the vendor specs as well.
Enter number of heads: 14
The followup question about drive heads can be left as default.
Enter physical number of heads[default]:
The last question you must answer can be pulled from the vendor specs as well.
Enter number of data sectors/track: 72
The remaining questions should be left as default.
Enter number of physical sectors/track[default]:

Enter rpm of drive[3600]:

Enter format time[default]:

Enter cylinder skew[default]:

Enter track skew[default]:

Enter tracks per zone[default]:

Enter alternate tracks[default]:

Enter alternate sectors[default]:

Enter cache control[default]:

Enter prefetch threshold[default]:

Enter minimum prefetch[default]:

Enter maximum prefetch[default]:
The last question you must answer about the disk is its label information. Enter the vendor name and model number in double quotes for this question. For our sample disk, this would be:
Enter disk type name (remember quotes): "SEAGATE ST32550N"
With this information, Solaris makes creating partitions easy. Dare I say, fun?
After the last question from the type command, you will be placed at the format> prompt. Enter partition to start the partition menu.
format> partition

PARTITION MENU:

0 - change '0' partition

1 - change '1' partition

2 - change '2' partition

3 - change '3' partition

4 - change '4' partition

5 - change '5' partition

6 - change '6' partition

7 - change '7' partition

select - select a predefined table

modify - modify a predefined partition table

name - name the current table

print - display the current table

label - write partition map and label to the disk

quit

partition>
At the partition> prompt, enter modify to begin creating the new partitions. This brings up a question about what template to use for partitioning. We want the All Free Hog method.
partition> modify

Select partitioning base:

0. Current partition table (unnamed)

1. All Free Hog

Choose base (enter number)[0]? 1
The All Free Hog method enables you to select one partition to receive the remainder of the disk once you have allocated a specific amount of space for the other partitions. For our example, the disk hog would be the /web partition because you want it to be as large as possible.
As soon as you select option 1, you should see the following screen:
Part Tag Flag Cylinders Size Blocks

0 root wm 0 0 (0/0/0)

1 swap wu 0 0 (0/0/0)

2 backup wu 0 - 3507 1.99GB (3508/0/0)

3 unassigned wm 0 0 (0/0/0)

4 unassigned wm 0 0 (0/0/0)

5 unassigned wm 0 0 (0/0/0)

6 usr wm 0 0 (0/0/0)

7 unassigned wm 0 0 (0/0/0)

Do you wish to continue creating a new partition

table based on above table [yes]? yes
Because the partition table appears reasonable, agree to use it as a base for your scheme. You will now be asked which partition should be the Free Hog Partition, the one that receives whatever is left of the disk when everything else has been allocated.
For our scheme, we'll make that partition number 5.
Free Hog Partition[6]? 5
Answering this question starts the list of questions asking how large to make the other partitions. For our web server, we need a root partition to be about 200 MB for the system software, a swap partition to be 64 MB, a /tmp partition to be 200 MB, a /var partition to be 200 MB, and a /usr partition to be 400 MB. Keeping in mind that partition 2 has already been tagged as the "entire disk" and that partition 5 will receive the remainder of the disk, you will be prompted as follows:
Enter size of partition '0' [0b, 0c, 0.00mb]: 200mb

Enter size of partition '1' [0b, 0c, 0.00mb]: 64mb

Enter size of partition '3' [0b, 0c, 0.00mb]: 200mb

Enter size of partition '4' [0b, 0c, 0.00mb]: 200mb

Enter size of partition '6' [0b, 0c, 0.00mb]: 400mb

Enter size of partition '7' [0b, 0c, 0.00mb]: 0
As soon as you finish answering these questions, the final view of all the partitions appears looking something like:
Part Tag Flag Cylinders Size Blocks

0 root wm 0 - 344 200.13mb (345/0/0)

1 swap wu 345 - 455 64.39mb (111/0/0)

2 backup wu 0 - 3507 1.99GB (3508/0/0)

3 unassigned wm 456 - 800 200.13mb (345/0/0)

4 unassigned wm 801 - 1145 200.13mb (345/0/0)

5 unassigned wm 1146 - 2817 969.89mb (1672/0/0)

6 unassigned wm 2818 - 3507 400.25mb (690/0/0)

7 unassigned wm 0 0 (0/0/0)
This is followed by the question:
Okay to make this the correct partition table [yes]? yes
Answer yes since the table appears reasonable. This brings up the question:
Enter table name (remember quotes): "SEAGATE ST32550N"
Answer with a description of the disk you are using for this example. Remember to include the quote symbols when answering. Given all of this information, the system is ready to commit this to disk. As one last check, you will be asked:
Ready to label disk, continue? y
As you might imagine, we answer yes to the question and let it commit the changes to disk. You have now created partitions and can quit the program by entering quit at the partition> prompt and again at the format> prompt.
Creating file systems To create a file system, simply run:
newfs /dev/c0t1d0s0
where /dev/c0t1d0s0 is the partition on which to create the file system. Be sure to create a file system on all the partitions except for partitions 2 and 3, the swap, and entire disk, respectively. Be sure to note the backup superblocks that were created. This information is very useful when fsck is attempting to repair a heavily damaged file system.
After you create the file systems, be sure to enter them into the /etc/vfstab file so that they are mounted the next time you reboot.
If you need to make the root partition bootable, you still have two more steps. The first is to clone the root partition from your existing system to the new root partition using:
 # mount /dev/dsk/c0t1d0s0 /mnt

ufsdump 0uf - / | ufsrestore -rf -
Once the file root partition is cloned, you can run the installboot program like this:
/usr/sbin/installboot /usr/lib/fs/ufs/bootblk /dev/rdsk/c0t1d0s0
Be sure to test your new file systems before you need to rely on them in a disaster situation.
IRIX For this example, we are creating a large scratch partition for a user who does modeling and simulations. Although IRIX has many GUI-based tools to perform these tasks, it is always a good idea to learn the command line versions just in case you need to do any kind of remote administration.
Creating partitions Once the drive is attached, run a program called hinv to take a "hardware inventory." On the sample system, you saw the following output:
...

Integral SCSI controller 1: Version WD33C93B, revision D

Disk drive: unit 6 on SCSI controller 1

Integral SCSI controller 0: Version WD33C93B, revision D

Disk drive: unit 1 on SCSI controller 0

Our new disk is external to the system, so we know it is residing on controller 1. Unit 6 is the only disk on that chain, so we know that it is the disk we just added to the system.
To partition the disk, run the fx command without any parameters. It prompts us for the device name, controller, and drive number. Choose the default device name and enter the appropriate information for the other two questions.
On our sample system, this would look like:
fx

fx version 6.2, Mar 9, 1996

fx: "device-name" = (dksc)

fx: ctlr# = (0) 1

fx: drive# = (1) 6

fx: lun# = (0)

...opening dksc(1,6,0)

...controller test...OK

Scsi drive type == SEAGATE ST32550N 0022

----- please choose one (? for help, .. to quit this menu)-----

[exi]t [d]ebug/ [l]abel/

[b]adblock/ [exe]rcise/ [r]epartition/

fx>
We see that fx found our Seagate and is ready to work with it. From the menu we select r to repartition the disk. fx displays what it knows about the disk and then presents another menu specifically for partitioning the disk.
fx> r

----- partitions-----

part type cyls blocks Megabytes (base+size)

7: xfs 3 + 3521 3570 + 4189990 2 + 2046

8: volhdr 0 + 3 0 + 3570 0 + 2

10: volume 0 + 3524 0 + 4193560 0 + 2048

capacity is 4194058 blocks

----- please choose one (? for help, .. to quit this menu)-----

[ro]otdrive [u]srrootdrive [o]ptiondrive [re]size

fx/repartition>
Looking at the result, we see that this disk has never been partitioned in IRIX before. Part 7 represents the amount of partitionable space, part 8 the volume header, and part 10 the entire disk.
Because this disk is going to be used as a large scratch partition, we want to select the optiondrive option from the menu. After you select that, you are asked what kind of file system you want to use. IRIX 6 and above defaults to xfs, while IRIX 5 defaults to efs. Use the one appropriate for your version of IRIX.
Our sample system is running IRIX 6.3, so we accept the default of xfs:
fx/repartition> o

fx/repartition/optiondrive: type of data partition = (xfs)
Next we are asked whether we want to create a /usr log partition. Because our primary system already has a /usr partition, we don't need one here. Type no.
fx/repartition/optiondrive: create usr log partition? = (yes) no
The system is ready to partition the drive. Before it does, it gives one last warning allowing you to stop the partitioning before it completes the job. Because you know you are partitioning the correct disk, you can give it "the go-ahead":
Warning: you must reinstall all software and restore user data from backups after changing the partition layout. Changing partitions causes all data on the drive to be lost. Be sure you have the drive backed up if it contains any user data. Continue? y
The system takes a few seconds to create the new partitions on the disk. Once it is done, it reports what the current partition list looks like.
----- partitions-----

part type cyls blocks Megabytes (base+size)

7: xfs 3 + 3521 3570 + 4189990 2 + 2046

8: volhdr 0 + 3 0 + 3570 0 + 2

10: volume 0 + 3524 0 + 4193560 0 + 2048

capacity is 4194058 blocks

----- please choose one (? for help, .. to quit this menu)-----

[ro]otdrive [u]srrootdrive [o]ptiondrive [re]size

fx/repartition>
Looks good. We can exit fx now by typing .. at the fx/repartition> prompt and exit at the fx> prompt.
Our one large scratch partition is now called /dev/dsk/dks1d6s7.
Creating the filesystem To create the file system, we use the mkfs command like this:
mkfs /dev/rdsk/dks1d6s7
This generates the following output:
meta-data=/dev/dsk/dks1d6s7 isize=256 agcount=8, agsize=65469 blks

data = bsize=4096 blocks=523748, imaxpct=25

log =internal log bsize=4096 blocks=1000

realtime =none bsize=65536 blocks=0, rtextents=0
Remember to add this entry into the /etc/fstab file so that the system automatically mounts the next time you reboot.
Summary
As you've seen in this chapter, creating, maintaining, and repairing filesystems is not a trivial task. It is, however, a task which should be well understood. An unmaintained file system can quickly lead to trouble and without its stability, the remainder of the system is useless.
