FAT - Windows File Systems

FAT12

FAT16

FAT32(VFAT)

HPFS/HPFS386

FAT12- 12 bit allocation used on floppy diskettes. Windows 2000 will default to formatting a very small volume (64MB flash card, for instance) with FAT12 to prevent waste of space for the overhead incurred with other file systems. Every operating system uses FAT12 for floppies to allow for interoperability.

FAT16- 16 bit allocation used on small (<2GB) hard drives. Was sufficient for small volumes on personal computers, but lacked the performance and stability needed for a file server. The 8.3 file naming convention was a serious limitation that tormented users for years.

FAT32- also called VFAT, used a 32 bit allocation table to overcome size limitations on the 16 bit system. Above 500MB, FAT16 required cluster sizes that started to induce large amounts of waste slack space and performance lagged. Introduced with Windows 95 0SR2, mainstreamed with Windows 98. Long filename support provided as a horrendous kludge.

HPFS- High Performance File System-built for speed! Designed as a joint venture between Microsoft and IBM and included many marked improvements over FAT. These improvements include long filename support, 512byte allocation units (which almost completely did away with file slack), prevention of file fragmentation, and tracking of considerably more file metadata than FAT allowed. The 386 version had nothing to do with CPU architecture, but rather used the name as the latest marketing buzzword meaning “faster”. It had a larger file I/O cache and some other minor improvements that resulted in a marked performance boost for the server version of OS/2. But, it was release about the same time IBM and MS split and IBM had to pay royalties to MS anytime it sold HPF386 so it was not widely used. Windows support for this FS dropped with Windows 2000.

NTFS- While many consider it a “new file system built from the ground up”, it is largely based on HPFS. It incorporates all the features of HPFS and Macintosh’s HFS and overcomes many performance and security issues they lacked. Where HPFS’s performance starts degrading above 400MB volumes, NTFS’s performance theoretically doesn’t drop off right up to the theoretical volume limit of 16EB (2TB is the practical limit, but we’ll see what happens when drives get that big).

MS-DOS went through three versions before FAT16 was introduced with DOS4.0. For all three of these, DOS ran from a floppy in a PC that had no Hard Disk Drive. In this sort of environment, issues such as file security were more easily dealt with by locking the floppy in a filing cabinet then by technical means. Thus, FAT was never designed with the features that are now considered a “a must” in a file system, such as access controls, encryption, compression, foreign language support, etc. Also, since FAT was designed to operate in the confined spaces of a floppy diskette, its performance on larger volumes degrades rapidly.

FAT Volume Layout

· First sector contains the MBR and partition table

· The FAT and a backup are in the next few sectors

· The root directory is immediately after that

· Everything else

	Boot Sector
	FAT1
	FAT2 (Duplicate)
	Root Folder
	Other folders and all files

FAT12 and FAT16 volumes will always follow the physical layout above. FAT32 changed some of the rules about where to find these pieces, but still contains all these same basic structures.

There is always a “backup” FAT in case the first becomes corrupted. The two copies of the FAT are mirrored and unless the system dies while actually writing to the FAT, they will always be the same. The only real reason for the FATs to not match is a physical defect on the media. If this happens, it will most likely affect more than just a single sector and having the FATs adjacent means you run the risk of losing both the primary and your backup.

Bytes 17-18 in the first sector specify the maximum number of entries in the root directory and is usually 224 on a floppy disk and 512 on a hard disk. That number times the cluster size indicates the amount of space on the drive immediately following the backup FAT that will be reserved for the contents of the root directory. In a FAT file system, the root directory will always start in the first cluster following the backup FAT. The rest of the data and subdirectories will lie after that space. Regular directories will shrink and grow as necessary based on the number of entries in the directory and are located anywhere on the drive.

Due to formatting constraints, there are often a number of sectors after the data that cannot be allocated as part of the partition. These are usually referred to as hidden sectors. It is the same concept as file slack-think of this as partition slack. This space usually goes unused and inaccessible unless formatted as a small second partition or accessed via specially written software that bypasses the OS and read/writes directly to the drive. Bytes 28-29 of the first sector specify how many hidden sectors there are.

The changes made in FAT32 include allowing the second FAT and root directly to reside physically anywhere on the drive.

FAT12

· Designed for floppy disks

a. Every OS uses it for floppies

b. Allows for portability between OS

· Sometimes used on very small volumes

a. Less than 16MB

FAT12 uses a 12-bit file allocation table entry (212 clusters)- primarily used on floppy disks, but can be found on very small volumes in Windows 2000. On volumes with fewer than 32,680 sectors (less than 16 MB), the cluster sizes can be up to 8 sectors per cluster. In this circumstance, the format program creates a 12-bit FAT.

It generally doesn’t matter what OS you are running- a floppy is formatted with FAT12. The table below shows the specifications on each type of floppy diskette.

	Size
	5-1/4
	5-1/4
	5-1/4
	5-1/4
	5-1/4
	5-1/4
	5-1/4
	5-1/4

	Capacity (in KB)
	160
	180
	320
	360
	1200
	720
	1440
	2880

	Density (Double/High)
	D
	D
	D
	D
	H
	D
	H
	E

	Media descriptor byte
	FE
	FC
	FF
	FD
	F9
	F9
	F0
	F0

	Sides (heads)
	1
	1
	2
	2
	2
	2
	2
	2

	Tracks
	40
	40
	40
	40
	80
	80
	80
	80

	Sectors per track
	8
	9
	8
	9
	15
	9
	18
	36

	Total sectors
	320
	360
	640
	720
	2400
	1440
	2880
	5760

	Bytes per sector
	512
	512
	512
	512
	512
	512
	512
	512

	Reserved sectors
	1
	1
	1
	1
	1
	1
	1
	1

	Entries in root dir
	64
	64
	112
	112
	224
	112
	224
	

	Sectors per FAT
	1
	2
	1
	2
	7
	3
	9
	

	Hidden sectors
	0
	0
	0
	0
	0
	0
	0
	0

FAT32

· Larger FAT entries give way to larger volumes and ability to track more files

· Introduces concept of Long File Names to FAT

· Root directory no longer “nailed down”

· Backup FAT no longer just a mirror

FAT32 was “released” as a bandage to fix those limitations in FAT16. I put release in quotes because FAT32 was never really released by Microsoft. Rather, they supplied it in an OEM version of Win95 and in doing so pushed the support and compatibility issues onedit a:to the manufactures. Microsoft offers no support for OEM releases- users have to call the manufacturer of the hardware that they bought that copy of Windows bundled with.

The root directory, while still special in its own right, was now treated as a regular directory in that it could be located anywhere on the drive and no longer had a max entry limit. Bytes 44-47 of the BIOS Parameter Block portion of the Boot Sector contain the number of the first cluster of the root directory.

Either FAT can be designated at the Primary now. Before, there was always a “backup”, but never really a way to use it. FAT32 allowed for either FAT to be the primary or backup which gave rise to a whole new level of reliability and flexibility.

The theoretical max volume size is 2TB, but this is not practical due to overhead that would occur at those sizes. Current limits on volume size (32GB in Win2k/XP and 127GB in win98) are imposed by the software creating the partitions (format.com); not a limitation of the file system. Win2k will attempt to format a volume larger than 32GB, then (after a long while) will produce an error “Volume too large” and a search for this error code in MS TechNet will eventually lead you to an article named “Advantages of Using NTFS”.

Win2k/XP can read an already formatted FAT32 volume of any size; it just won’t allow you to create one.

	Volume
	Cluster Size

	256MB-8GB
	4KB

	8-16GB
	8KB

	16-32GB
	16KB

	32-??GB
	32KB

FAT File Names

· Stored in the Directory Entries

· Cannot contain any of the following:

.”// () : ; l = , or space

· 8.3 – Eight ASCII characters for name, a period, and three ASCII characters for extension

The name and other metadata about a file is all stored in the 32-byte directory entry for that file.

The list of characters that cannot be used in a file name, “.” // () ; : I = or 0x20” is really an OS issue, not a file system issue. Linux, via its FAT support, can create files with some of these characters in their names. This may cause problems with portability if that disk is later read in a Windows environment, so it is better to go with the longer list of what is not allowed.

Dating back to the creation of the first FAT12 volumes in the 70’s, all files were given a name in the 8.3 naming convention. That is, eight characters for the name, a “dot”, and three characters for an extension that identified the type of file. Eight characters is not a lot of space and left many a secretary confused about that that the file really was. Long file name support was later show-horned in, but not in any semblance of an elegant way.

FAT Directory

· Directories are files that contain a list of other files. The OS interprets this as a container, but they are stored the same as files with regards to how they consume entries in the FAT.

· Each directory entry contains a file’s name, attributes, date/time stamps, starting cluster, and file’s size.

Directories, with the exception of root, grow, shrink, and get fragmented just like any file. The root directory is located either immediately after the FAT area in FAT12 and FAT16 or at the location specific in the BIOS Parameter Block in FAT32. Usually, FAT32 will still place the root directory in the first available cluster, which places it right behind the FAT area, but this doesn’t HAVE to be its location. All other directories in all the FAT file systems will be allocated clusters as they need them and can reside anywhere on the disk.

When deleting a file, the first byte in the directory entry is changed to 0xE5 which tells the file system that that entry is available to be overwritten by a new file.

Commands like DIR ignore files that start with this byte code as if they do not exist. Nothing else is changed or deleted. The UNDELETE command searches for all entries that start with 0xE5 and lists them. The first byte used to be the first letter of the file’s name so the list produced by undelete utilities will usually ask you to supply a letter to start the file name with and then change this 0xE5 to that letter and file is “magically” restored.

While not a lot of metadata, all metadata about a file is stored in its directory entry. This will include a name for the file, a create date and time, a modified date and time, a last accessed date, the file attributes, the starting cluster where the file is located on the disk, and the file’s size in bytes.

Folders contain a 32-byte entry for each file and folder they contain. The entry includes the following information:

	Byte(s)
	Contents

	0-7
	File name or first 8 characters of volume name

	8-10
	File extension or last 3 characters of volume name

	11
	Attribute byte

	12
	Reserved

	13
	C-Time’s seconds (10 millisecond resolution)

	14-17
	C-Time/Date

	18-19
	A-Date

	20-21
	Unused

	22-25
	M-Time/Date

	26-27
	Number of first cluster

	28-31
	Number of bytes in file, or zero for subdirectory or volume label

The attribute byte breaks into:

	Bit
	Meaning if bit = 1

	7,6
	Unused

	5
	File has been changed since last backup (archive bit)

	4
	Entry represents a subdirectory

	3
	Entry represents a volume label

	2
	System file

	1
	Hidden file

	0
	Read-only

The Time and Date attributes are read as follows:

	Time
	Bits
	Contents

	
	15-11
	Hour (0-23)

	
	10-5
	Minute (0-59)

	
	4-0
	Double seconds (0-29)

	Date
	Bits
	Contents

	
	15-9
	Years elapsed since 1980 (0-127)

	
	8-5
	Month (1=January, 2=February, …, 12=December)

	
	4-0
	Day (1-31)

According to DOS, the world began on January 1,1980 at 00:00:00 and will end on December 31,2107 at 23:59:58.

Long File Names

· Causes the name to no longer fit in a 32-byte entry. This is fixed by pre-pending 32-byte headers to accommodate the LFN.

Long file name support was added to FAT first via the FastFAT drivers in NT3.5 and later via VFAT in Win95. VFAT was released with the initial release of Windows 95 and included long file name support and some performance enhancements, but was still a 16-bit FAT. It wasn’t until OEM Service Released 2 of Win95 that FAT32 was released.

The image on this page shows a typical LFN entry. It is actually 3 short filenames entries. The bottom two rows are the primary entry that contains the derived short name and the file’s other metadata. Extra entries are added in from the bottom up until the entire LFN is accommodated.

To derive the short name, Windows will take the first 6 characters of the LFN, omitting spaces and special characters, and add a tilde (~) and a number. If other files have the same first 6 characters, the number will be incremented to deconflict. If you copy a file into a directory that already has a file that has the same alias, the file being copied will have its short name changed to another name. this can cause problems with programs that have links to the file’s short name instead of its LFN. The registry often points to alias.

The first byte of each long entry is a count of how many entries were added to accommodate the entire name. that counter on the last entry added will be increased by 0x40 to indicate that it is the last entry.

The LFN is stored in a Unicode (POSIX compliance!) format for support for languages that don’t use English letters. For this reason 2 bytes are allocated for each character of the LFN. If the LFN is in English, only 1-byte is needed and the second is a null. (i.e.: ABC in hex is 41 42 43 but in the LFN it will be stored as 41 00 42 00 43 00) The LFN is always null terminated (0x0000) and the rest of the bytes in that entry that could hold characters will be padded with 0xFFFF.

LONG FILE NAME ENTRIES

Here is a real world example of a common long file name, “New Text Document.txt”. This name consumes three entries. The bottom entry contains the short name for the file and all the normal information that is required to track the file.

The second and third entries are the long name for the file, but there is a hole cut in the middle of the name where the attributes, reserved bytes, and lack of A-Time would be in a normal entry. The attributes will always be 0x0F and the reserve byte is a checksum of the short file name, in this case 0x9F. This checksum tells the file system if something corrupted the list of entries and verifies that this entry goes with the short-named entry below it. The first byte is a counter that shows how many entries are in use. The last entry will have this counter’s first nibble incremented by 0x4 to denote that it is the last entry. For normal names this will place the counter in the 0x41-0x44 range, but given the 255 character limit to the names the actual top end of this counter is 0x54.

The LFN is null terminated, notice the 0x0000 after the last character in the top entry, and the rest of the last entry is padded with 0xFF in all of the fields that could store a character of the filename.

An Extreme LFN Example

Here we have a file whose name is 255 characters long. The view has been expanded to 32bytes per row so that each line is a separate directory entry.

The top three lines are the original name of the file as it was created when clicking `new’->`text document’ from the right click context menu. This operation actually creates a file named “New Text Document.txt” and then immediately kicks off a rename operation. Since FAT is reluctant to overwrite existing entries as long as there is room, we have this artifact to contend with.

Column 0 provides the counter to show how far into the LFN each entry is.

Column 11 is 0x20 for the two short name entries to denote the archive attribute is the only one set for these files. The rest of the entries are set to 0x0F, which sets the Volume, System, Hidden, and Read-Only attributes – this is the setting for all LFN entries.

Column 12 is always reserved. It is usually either 0x00 or 0x18

Column 13 is reserved in a short-name entry or is the checksum of the short name when in a long-name entry. This checksum provides a check that the long name is associated with the correct short name.

Columns 26-27 are the starting cluster on short-name entries and always 0x0000 in long-name entries.

The Skinny on the FAT

· File Allocation Table – cluster map that shows which clusters are in use and which are free.

· File’s directory entry contains the starting cluster number. Each entry contains the number of the next cluster occupied by the file or an EOF marker

· This process is referred to as cluster chaining

When creating a new file, the file’s name, attributes, starting cluster and size are saved in an entry in the directory where the file resides. The OS goes through the FAT and finds the first unused cluster and sets this as the file’s starting cluster. The starting cluster is the address of the first cluster used b the file. Each cluster’s entry in the FAT contains a pointer to the next cluster in the file, or marker (0xFFFF) which indicates that this cluster is the end of the chain.

Files can be put together without knowing the name, attributes, or even size by just following the chain in the FAT. Start with entry 2, the first addressable cluster, and follow it to completion. Keep a tally of each cluster you have crossed so far. Save the data extracted from those clusters with some annotation that they started in cluster 2. Then go to the next cluster you haven’t extracted already and do the same. Eventually you will have all the files, but with no file names, times, or attributes. Now traverse all the directory listings and annotate the starting cluster each belongs to in order to associate a name with the extracted files.

Figure 17.4 from Windows 2000 Professional Resource Kit

Image is from Tim Paterson’s 1983 article titled An Inside Look at MS-DOS in Byte Magazine. Tim wrote DOS 1.0.

FAT16

· 16 bit entries
· Entry is two bytes written ‘backwards’ (little-endian)
· First two entries are reserved
· Entry 0 is the Media Descriptor
· Entry 1 is used for a few different things
· Entry 2 is the first addressable cluster in the volume
Being a x86 based system, all of the multiple byte numbers that we encounter will be written ‘backwards’. 0x1234 will be stored on the disk as 0x3412. This is a function of how the processor picks the bytes up off the drive.

The first entry is reserved and contains the Media Descriptor, in this case 0xFFF8 since 0xF8 is the media descriptor for a fixed disk (see page 5 for a partial list of other media descriptor bytes). In the original, early DOS days this is where the Media Descriptor lived, full time. Later on it was moved to the Boot Sector, but for backward compatibility reasons this field is still used. Some utilities, ScanDisk for instance, use this field to get the Media Descriptor byte instead of the one in the Boot Sector.

The second entry is also reserved. It sometimes contains what is to be used as the end-of-chain marker throughout the rest of the FAT. In Windows this will always be 0xFFFF, but could be any value between 0xFFF8 and 0xFFFF. Linux used to use 0xFFF8 in this field and as the EOF marker elsewhere in the FAT, but it was found that some devices (certain MP3 players) didn’t recognize anything but 0xFFFF as an EOF marker so this was changed. Some references say that entry is a ‘dirty bit’ to track the state of consistency of the file system.

Starting with entry 2, the first addressable cluster, the FAT is a series of either pointers to other clusters or EOF markers as described on the previous page. The example above is FAT that contains 2 files:

 File1’s directory entry tells us it starts in cluster 2. In entry 2 is 0xFFFF. This tells us that this file is only 1 cluster long and that we should go to that cluster and read the number of bytes in the directory entry’s file size field to extract the file.

File2’s directory entry tells us it starts in cluster 3. In entry 3 is 0x0004. This tells us that the data in cluster 3 continues in cluster 4. Entry 4 contains 0x0005, and entry 5 contains 0x0006, and so on until we reach the EOF marker. We then divide the file size, found in the directory entry, by the cluster size and the remainder is the number of bytes from the last cluster that we need to read to complete the file.

FAT12

· 12-bit entries

· Entries are read ‘backwards (little-endrian)

· Entries are read 16 bits at a time and 4 bits are ignored – either first or last 4 depending which entry

· This causes us to have split the middle byte and place its parts on the far side of the adjacent bytes

FAT12 was around before FAT16 but since bytes are multiples of 8 the math was a lot simpler in the last page. FAT12’s cluster chaining works identically to the previous example. The only difference, and it is a confusing one, is how we read the 12-bit entries in the 16-bit ‘hex’ editor.

File1’s directory entry says it starts in cluster 2, so we read in the entry 2 from above:

The computer has to read in two bytes – 04 F0

These are then reversed to correct the ‘endianess’ – F0 04

The first nibble of the (now) first byte actually belongs to the next entry so it is ignored, which leaves: 004

But, to read in odd numbered entries, like File2’s starting cluster of 3:

The computer reads in two bytes – F0 FF

These are then reversed to correct the ‘endianess’ – FF F0

The last nibble of the (now) last byte is actually from entry 2, so it is ignored – FFF

As a bonus to as to the confusion – File2

FAT32
· 28-bit entries

· Why 28? Will the madness ever end?!?

· Entries consume 32 bits, but last 4 bits are ignored

· Still little-endian

FAT32 actually uses 28-bit entries in the FAT. 32-bits are consumed, but the upper 4-bits are reserved and left 0. This gives us an interesting quark in that the second of the opening two reserved entries is supposed to be the EOF marker in use which is 0xFFFFFFFF, but due to the 4 reserved bits the actual EOF marker seen on Windows formatted volumes is 0x0FFFFFFF.

The root directory was previously untracked because it was locked into its location and size, but with FAT32 it now is tracked in the FAT like every other directory. The BIOS Parameter Block in a FAT32 formatted Boot Sector contains a field that gives the cluster number of the starting point of the root directory. This value is almost always the first addressable cluster, 2.

Other than reversing the numbers to counter the little-endian effect, the 32-bit fields line up nicely and are rather easy to pick out.

FAT Values

· Each entry in the FAT contains one of the following values:

FAT12

FAT16
FAT32:

Value

000

0000

 00000000

unassigned

001

0001

 00000001

invalid entry

002-FEF

0002-FFEF
 00000002-FFFFFFEF
assigned

FF0-FF6

FFF0-FFF6
 FFFFFFF0-FFFFFFF6
reserved

FF7

FFF7

 FFFFFFF7

cluster has bad sector

FF8-FFF

FFF8-FFFF
 FFFFFFF8-FFFFFFFF
end of cluster-chain

When the volume is formatted, the FAT is initialized with all zeros. The first two entries are reserved. Because of this, an entry of 0 means the entry is available for use and an entry of 1 is invalid. The first addressable cluster becomes entry 2. In FAT12 and FAT16, the root directory is permanently anchored both in location and size, so there is no need to track it in the FAT. In FAT32 the root directory, which in theory can be anywhere, is almost always in the first addressable cluster and starts off only 1 cluster in size, so it will be present in entry 2.

An entry ending in F7 means that at least on of the sectors in that cluster has produced an error that tells the file system that that sector will no longer reliably hold data. With modern hard drive controllers, the tracking of bad sectors is done on the controller and the file system would never see a bad sector and thus never mark one as such. There are programs written to hide data that do so by marking sectors as bad so that the file system will not allow the user access to that data and it usually won’t be seen even by anti-virus or similar scanners. Nowadays, any “bad” sectors on a volume should be scrutinized and verified as bad.

The file system will treat any entry of all F ending in anything from 8 to F in hex as an end-of-cluster-chain marker. The system that formatted the volume should place the preferred EOF marker in entry 1 and use that one marker throughout. DOS and Windows will always use 0xFFFF. Originally, the FAT support in Linux used 0xFFF8 but it was found that some MP3 players did not recognize this marker and now the current Linux kernel uses 0xFFFF as well.

