X Windows

Security Policy Item

X Windows-- 6000/tcp through 6255/tcp

Vulnerability

X Windows is an comparatively dangerous protocol. According to "Securing X Windows" from CIAC (available at http://ciac.llnl.gov/ciac/documents/ciac2316.html), "any client that can access a server can potentially access and change any X communications that take place on it. This could include the following:

· Modifying session parameters.

· Create/destroy windows - Was that document saved before the window mysteriously disappeared?

· Capture X events - For example, reading keystrokes on an xterm window, which include a login and password.

· Create X events - For example, sending keystroke sequences to an emacs window, or an xterm window, to execute a command.
Clearly, X servers are inherently dangerous. What's worse, many servers ship with world accessibility as the default setting."

Several X Windows implementations are also susceptible to buffer overflow attacks, such as the Solaris libX11 (a library in the X Windows system) vulnerability detailed in Sun Microsystems' Security Bulletin #00154, which states that there are "several buffers in libX11 that may be overflowed. The buffer overflow vulnerabilities may be exploited through setuid and setgid programs that link libX11 to increase privileges, including root privileges."

Additionally, because of a default permissions problem on a file that ships with X Windows, connections can be hijacked.

Anyone can delete the socket used for communications, causing a denial of service, but the program provided at the site allows a user to "hijack X11 connections and steal magic cookies. (In fact

anything in the protocol not protected against man-in-the-middle attack is vulnerable.) Having access to the X display of your victim, you can do whatever you like: from displaying 'Boo!' all over the screen to complete takeover of the session and the victim's accounts, both local and remote."

Filter Application

Login services should be stopped at the perimeter router. In this example, we will be applying the extended ACL to the inside interface of the perimeter router, as described earlier.

The syntax for an extended ACL is:

access-list {list name} permit/deny {protocol} {src} {mask} {operator} {port} {dest} {mask} {operator} {port} established

In the following block from the router's configuration file, we will block X Windows services to all machines.

!named ACL Packet Filter

ip access-list extended packet_filter

!Block X Windows (TCP 6000-6255)

deny tcp any any range 6000 6255 log

!Allow other traffic

permit ip any any

The "packet_filter" ACL is applied at the internal router interface for all incoming traffic, using the following command from interface configuration mode:

router# conf t

router(config)# int eth2/0

router(config-if)# ip access-group packet_filter out

Additional Actions

It is also worthwhile to filter UDP port 177 at the perimeter, since this is where the XDMCP (X Windows Display Manger component) is hosted. Many versions of the XDMCP daemon have well-known security holes that may be exploited.

Filter Verification

The X Windows packet filters can be tested by attempting to use the blocked services from outside of the perimeter router. Alternately, since it is a purely TCP protocol, one can simply use telnet to attempt to connect to the specific blocked ports, for example port 6010 blocking could be verified with: telnet NNN.16.27.66 6010.

The resulting log excerpt from the perimeter router shows that the connection attempts to the X Windows ports 6010 and 6069 were stopped by the "packet_filter" ACL on the router:

11:18:25: %SEC-6-IPACCESSLOGDP: list packet_filter denied tcp NNN.16.11.5(19837) -> NNN.16.27.70(6010), 1 packet

11:19:12: %SEC-6-IPACCESSLOGDP: list packet_filter denied tcp NNN.16.11.5(10472) -> NNN.16.27.70(6069), 1 packet

