This document is provided without warranty, always vet out what works best for you and your organization.

Scope

This standard applies to all corporate equipment and data, including corporate customer data, whether located at a corporate facility or a third party facility, and whether handled by corporate employees, or corporate contractors, vendors, third party service providers, or their staff or agents. This standard also applies to all wholly owned and partially owned subsidiaries.

The guidance in this standard shall be considered the minimum acceptable requirements for the use of Secure Coding Standards - Java. This standard sets forth expectations across the entire organization. Additional guidance and control measures may apply to certain areas of corporate. This standard shall not be construed to limit application of more stringent requirements where justified by business needs or assessed risks.

Secure Coding Standards - Java

Corporate’s business functions rely upon the integrity, confidentiality, and availability of its computer systems and the information assets stored within them. Responsibilities and procedures for the management, operation and security of all information processing facilities must be established. This standard supports the stated objectives.

Roles & Responsibilities

The Development Security Lead is a member of the development team that will be the main point of contact within the development team for security related questions throughout the software development lifecycle.
The Security Advisor is not a member of the development team and guides the team in following the secure coding practice. The Security Advisor will perform the final security review approval.
The Project Manager communicates security information to all teams and ensures security pushes are scheduled and performed. They keep QA and development of changes in security practice.

Quality Assurance tracks software defects and security vulnerabilities separately and communicates them to development.

The Information Security Department will assist End Users and IT Custodians in assessing, defining, implementing, managing and monitoring appropriate controls and security measures.

The Information Security Department will audit and review the adequacy of controls and security measures in place to measure and enforce conformance to this standard.

Purpose

This document is a Java specific supplement to the corporate Software Security Architecture document for secure coding standards. This is a collection of best practices that are considered to improve the security of Java projects in several areas.

SDK Requirements

Java Platform Standard Edition (Java SE)

All projects should employ the use of Java SE 6 or higher.

Exception: Projects that have already begun with an older version of the SDK. It is not recommended that ANY project run below version 1.4.2

Java Enterprise Edition (Java EE)

All projects should employ the use of a Java EE 5 or higher application environment and SDK. Some examples:

· JBoss

· WebSphere

· WebLogic

· User Management

· Authentication

· Passwords

Passwords must never be stored in the clear, in memory or persistent storage. They must be stored using a strong hashing algorithm like SHA-2 (Specifically SHA-256 or SHA-512). The MD5 algorithm has seen some attacks in recent times and must never be used.

The following is an example of how to properly hash a password for the first time with a Salt:

SecureRandom random = SecureRandom.getInstance("SHA2PRNG");

byte salt[] = new byte[8];

random.nextBytes(salt);

byte[] password = getPassword();

byte[] saltedPassword = newbyte(salt.length + password.length);

System.arraycopy(salt, 0, saltedPassword, 0, salt.length);

System.arraycopy(password, 0, saltedPassword, salt.length, password.length);

MessageDigest m;

hash = h;

m = MessageDigest.getInstance(h);

pass = m.digest(saltedPassword);

Password policies should be enforced via the caller of the password creation. These policies should be referenced from the corporate Software Security Architecture Guide.

Salts

Password salts should be generated with a minimum length of 8 bytes. See the example for password.

Session Management

Session IDs

Session tokens AKA SessionIDs should be generated randomly from a cryptographically random source. When using the Java Platform application container, the Session API provided by the servlet API will provide the sessions. The session IDs generated by the container must be sent from the client to the server with every request to enable server side session state management. Under no circumstances should any sensitive data be stored on the client in a cookie. The session ID maybe stored either in a cookie or as part of the URL.

Secure / Insecure Session ID Use

When creating session ID’s the unauthenticated session ID must be different from the authenticated session ID. This is to remove the possibility of that session ID being compromised in transit.

Session Expiration

Session’s must be expired after 30 minutes of inactivity. This implies that a user must be force to re-login if he / she returns to the application after 30 minutes of not having used it.

Session Reuse / Long running sessions

Under no circumstances should a session identifier be reused. If long term sessions are desired, then the following should be performed:

Create new session

Bases on authentication, repopulate persisted session data into new session object with lookup based on user identification.

See the Information Security – Web Application Security Architecture Standard for more information on session management.

Cryptography

JCA (Java Cryptography Architecture)

Projects leveraging the JCA can be recognized by the following packages:

Javax.security.*

Javax.crypto.*

Javax.crypto.interfaces.*

Javax.crypto.spec.*

The JCA uses algorithm independence removing code dependencies from particular cryptographic implementations. The engine classes interface with individual providers and which may be obtained from a variety of vendors. The following engine classes implement providers:

· Signature

· MessageDigest

· KeyFactory

· KeyPairGenerator

· Cipher

The JDK from SUN also comes with the following providers that implement the cryptographic functions for the security packages:

· Sun

· SunRsaSign

· SunJCE

The Java Cryptographic Extensions (JCE) is now included with the JDK and should now be considered part of the JCA. Other crypto related libraries that use the JCA framework include:

· The Java Secure Socket Extension (JSSE) for Secure Socket Layer (SSL) and Transport Layer Security (TLS)

· The Java Generic Security Services (JGSS)

· The Simple Authentication and Security Layer (SASL) for communicating between applications

A selected provider must comply with FIPS 140-2, Security Requirements for Cryptographic Modules and SecureRandom providers must be unpredictable as described in RFC 1750: Randomness Recommendations for Security.

Symmetric Cryptographic Providers

IBM and Sun’s JDKs both provide a few symmetric cryptographic providers.

After a 5 year selection process, the National Institute of Standards and Technology (NIST) chose the Rijndael block cipher as the new standard for symmetric encryption.

Because of this AES is the cryptographic provider that should be employed when using in supported JDKs.

Asymmetric Cryptographic Providers

When selecting an asymmetric algorithm, RSA or DSA should be selected. These algorithms are available in all of the major JCA implementations.

Random Numbers

In order to effectively build cryptographically strong random numbers, there are specific requirements based on the different platforms:

Windows – as of Java 1.6.0_22, the PRNGProvider (SecureRandom) from the JCE is linked to a source of entropy that creates cryptographically strong random numbers.
UNIX and Linux – in most UNIX/Linux installations, /dev/random is a good source of entropy for SecureRandom. This can be configured by changing securerandom.source=file:/dev/random to $JAVA_HOME/jre/lib/security/java.security.

Alternatively the source of randomness can be set programmatically, but it is preferred to set this at the JVM level as it is one central place to maintain the configuration.

On both platforms, Random numbers should be generated in the same way. This code is cross-platform and should be a cryptographically strong source of randomness on both platforms:

SecureRandom sRandom = new SecureRandom(“SHA1PRNG”);
Keys

Cryptographic Keys should be stored in the JCA keystore. This keystore can be accessed via command line or programmatically:

Programmatically:

/* Load the keystore from a given file. */

KeyStore keyStore = KeyStore.getInstance("JCE4758KS");

char[] storepass = "storepass".toCharArray();

char[] keypass = "keypass".toCharArray();

FileInputStream storeStream = new FileInputStream("jce4758store");

keyStore.load(storeStream, storepass);

Command Line:

keytool -genkey -alias signFiles -keypass kpi135 -keystore susanstore -storepass ab987c
Key Sizes

Symmetric (AES):

A key size of 256 bits should be used when building a key for the AES provider. This is based on the current recommendations as of 2008.

Asymmetric (RSA / DSA):

Key pairs of 2048 bits a piece should be generated for the RSA / DSA provider. This is based on the current recommendation as of 2008.

Hashes

When creating hashes the SHA2 provider should be leveraged. MD5 is an aging algorithm, and has been under attack in recent times.

See password for an example.

Data Security (Storage and Transport)

Transport

When attempting to establish secure communication between 2 or more applications on a network, 128 bit or above SSL transport should be utilized. The 256 bit high encryption standard should be used where permitted. For SSL communications, the JDK provides Java Secure Sockets Extensions (JSSE). JSSE is the required standard as per the corporate Web Application Security Architecture document.

Variable Cleansing

When creating a variable to store sensitive information, that variable must be “zeroed” out after use. Such is the case when we place a password in a string for processing. Once the processing is completed it must be removed from memory. Specifically, because the actual string stays in memory and the pointer is removed results in that sensitive information still being accessible.

Example:

//For any byte or char array you need to clear out, the

//following code will work:

//this will be performed on some variable like byteArray

for(int i = 0;i<byteArray.length;i++)

{

byteArray[i] = ‘0’;

}
Transient Data

The Java keyword “transient” should be employed whenever dealing with sensitive data in a Class. This is not applicable to non-serializable classes.

Example:

public class transactionContainer

{

private transient CreditCard cc;

…

}
This will prevent the serialization of sensitive data.

Logging and Auditing

Framework

All java code should make use of a logging framework such as the JDK Logging framework or log4j for standardized logging and auditing. Logging should not be composed of System.out.println(…) statements or any other message that writes directly to the System.out stream object.

Bad example (these are common, but not the only possibilities):

Catch(Exception e)

 {

 System.out.println(e.getMessage());

}

OR

Catch(Exception e)

 {

 e.printStackTrace();

}
Events

The following events should be audited in Java:

Exceptions

Successful / Failed Authentication Attempts

Successful / Failed Authorization Events

Unexpected type returns during reflection

Account Lockouts

Password Resets

Example:

//Unexpected Reflection

if(obj instanceof ExpectedType)

{

…

}

else

{

 Log.error(“Unexpected Type: ” + obj.getClass().getName();

}
Required Log Data

The following meta-data should be available either directly or through correlation in every log entry (not necessarily in this order):

DATE / TIME in GMT

Source IP Address (When the IP address at the application level differs from that at the network level, both must be logged. This scenario is commonly seen when clients are being a NAT / firewall device).

SessionID (web applications)

UserID

Event Message (e.g. success / failed authentication, etc)

Data Validation

White-list Validation

Developers must use white-list validation since it is far easier to determine the list of allowed symbols rather than to estimate all the possible invalid ones. White-list validation works by simply allowing the valid characters and dropping everything else.

SQL Injection

SQL Injection attacks occur anywhere that a SQL command string is constructed from any type of input from a user. To prevent SQL injection attacks the application must restrict user input to the smallest character set possible, and refuse any input that contains character outside of that set. SQL meta-characters like % and - that have special significant to SQL command processors must also be escaped.

[1] | (pipe sign)

[2] & (ampersand sign)

[3] ; (semicolon sign)

[4] $ (dollar sign)

[5] % (percent sign)

[6] @ (at sign)

[7] ' (single apostrophe)

[8] " (quotation mark)

[9] \' (backslash-escaped apostrophe)

[10] \" (backslash-escaped quotation mark)

[11] < (left triangular parenthesis)

[12] > (right triangular parenthesis)

[13] ((left parenthesis)

[14]) (right parenthesis)

[15] + (plus sign)

[16] CR (Carriage return, ASCII 0x0d)

[17] LF (Line feed, ASCII 0x0a)

[18] , (comma sign)

[19] \ (backslash)

[20] – (dash or minus sign)

[21] [(left bracket)

[22]] (right bracket)

SQL Injection can be made extremely difficult to accomplish by the use of stored procedures or prepared SQL statements or by using bind variables. With this in mind developers may not use dynamic SQL queries and must perform all operations using such stored procedures. These not only have a security advantage but also provide a significant performance improvement. However, it must be noted that the use of SQL commands such as EXEC in stored procedures with un-validated input parameters does make the application vulnerable once again to SQL injection.

Command Injection attacks occur wherever there is a call to a system command. These kinds of attacks should be mitigated by validating any commands passed to the system, and generally it is a bad practice to accept commands from a user input. It is preferable to use the equivalent Java implementation of the command. For example when working with files, the developer should leverage the file IO APIs, and not parse through the result of passing a ‘dir’ or ‘ls’ command to the underlying OS. This is also a practice that will make the application more cross platform.

LDAP Injection

LDAP injection like SQL injection can also occur where queries are reading or modifying directory services. Using positive validation by allowing alphanumeric characters (A..Z,a..z,0..9) will prevent most LDAP injections. LDAP characters which should be filtered out or escaped:

[1] A space or "#" character at the beginning of the string

[2] A space character at the end of the string

[3] , (comma sign)

[4] + (plus sign)

[5] " (quotation mark)

[6] \ (backslash)

[7] <> (triangular parenthesis)

[8] ; (semicolon sign)

[9] () (parenthesis)

[10] | (pipe symbol)

[11] & (ampersand)

[12] = (equal)

[13] * (

Cross Site Scripting

For web server applications when generating HTML the resulting / rendering page which contains external input should be escaped so that if it contains embedded HTML tags, the tags are NOT treated as HTML by the browser. This will prevent most cross site scripting attacks. The following table lists the meta-characters that must be escaped, for instance < by < or preferably simply filtered out.

[1] <> (triangular parenthesis)

[2] " (quotation mark)

[3] ' (single apostrophe)

[4] % (percent sign)

[5] ; (semicolon)

[6] () (parenthesis)

[7] & (ampersand sign)

[8] + (plus sign)

Replace:
With:

'<'

"<"

'>'

">"

'"'

"""

'\''

"'"

'%'

"%"

';'

";"

'('

"("

')'

")"

'&'

"&"

'+'

"+"

Exceptions

Exception Types

Unchecked
Unchecked exceptions are revealed at runtime. This means when invoking the class method a catch() context is NOT required. The class may of course generate errors but this will be done so at run time. Errors of this type extend RunTimeException()class and many times involve user input, memory issues, or resources that are unavailable. Some examples of this include:

// process user phone

String strPhone = request.getParameter(“phonenumber”);

int phoneNumber = Integer.parseInt(strPhoneNumber);

If the user enters characters other then digits 0..9 then a run time exception will be thrown. If not captured further up the call stack, it could result in a stack trace displayed to the user.

From the class definition for Integer the developer understands that they should be handling NumberFormatException’s when invoking the method:

public static int parseInt (String s)

 throws NumberFormatException

Correctly catching the exception would like something like:

// process user phone number

try

{

String strPhone = request.getParameter(“phonenumber”);

int phoneNumber = Integer.parseInt(strPhoneNumber);

}

catch (NumberFormatException numformexception)

{

applicationlog.write(numformexception);

out.println(“This is the standard error page”);

}

Exceptions should be logged where they can be centrally monitored. The error messages for exceptions should not reveal anything to the user that might reveal details of the application.

Checked

Checked exceptions are required to have a try..catch context when invoked and must handle the all exceptions generated by the method. A good example of this is the SQLException which is a subclass of the Exception class. Since it is not derived from the RunTimeException class the compiler will enforce exception handling.

public boolean execute(String sql,

 int autoGeneratedKeys)

 throws SQLException

All catch blocks must process the exception and not suppress the exception. Do NOT merely implement a catch without handling the exception. For the example the following is a failure to handle the exception correctly:

Example:

try

{

Statement stmt = DBConnection.createStatement (“Select *

from login”);

ResultSet rs = stmt.executeQuery();

...

}

catch (SQLException sqlex)

{

// TODO: Add error handling code

System.out.println(e);

}

All catch blocks must log error messages and generate a constant error message appropriate for the application.

Example:

catch (SQLException sqlex)

{

Log.error(sqlex.getMessage());

System.out.println(“Standardized error message scheme”);

}

Off-By-One

Java arrays use zero-based indexing; thus, if you have an array of size 100, it is wrong to assign to element 100 of the array. For instance, each of the following illustrates the error:

int buff[100];

buff[100] = 100;

char buff[MAX_PATH];

buff[buff.size()] = 0; // should be buff[buff.size()-1]

int buff[SIZE];

for (int j = 0; j <= SIZE; j++) // should be < SIZE and = 0;

 // not <= buff[j]

Thus it is important to always make sure the correct size is being used for calculating loop bounds and array sizes.

if (i == 1) {

System.out.println("One");

} else if (i == 2) {

System.out.println("Two");

} else {

// Shouldn't happen

//assert false;

}

switch (i) {

case 1:

...

case 2:

...

default:

// can never happen

//assert false;

}

Client Applications

No Secrets or Private information in Code

Secrets and private information are vulnerable in code by reverse engineering the code. Passwords should never be stored locally for the purpose of comparison to user input.

Database Connection Strings

If an application needs to make a database connection during runtime, that application should leverage an installer to define the connection string during install time. That connection string should be provided by the user at install time. Alternatively the connection string can just be an option within the client application. Fundamentally a connection string should never ship in the code.

Configuration (Application Servers)

Database Connection Strings

JBoss

JBoss Inc. has provided an excellent tool for protecting Database connection strings. When configuring JBoss for JDBC connectivity the following tool should be leveraged:

java -cp 'lib/jboss-jmx.jar;lib/jboss-common.jar;server/default/deploy/jboss-jca.sar;server/default/lib/jbosssx.jar'

 org.jboss.resource.security.SecureIdentityLoginModule password

This tool leverages the Java keystore to protect the keys, and it encrypts the Database connection protecting the password.

WebLogic

BEA has provided the following tool for encrypting database passwords:

java weblogic.j2ee.PasswordEncrypt <descriptor file> <domain config dir>
This will protect the plain text password preventing global exposure to the password.

Exceptions under this policy must be detailed in a Risk Acceptance form approved by the System/Application Business Owner, a Executive Lines of Business representative and the IT Custodian and the Information Security Compliance Department.
