Conversion Tips
Here's the approximate process I used to transition from a Windows to Linux desktop. Of course, your mileage may vary:

1. Ban proprietary upgrades and new proprietary programs immediately

2. Segregate your data from your apps and OS

3. Make a transition plan

4. Find dead ends in your plan, and find and ways out of those dead ends

5. Create a practice setup

6. Get hardware ready to accept Linux

7. Install Linux

8. Do final windows backup

9. Samba data across to the Linux box

10. Test to verify a working setup

11. Do a backup of your Linux data

12. Rearrange directories to suit new environment

13. Delete or rename DATA filenames with spaces

14. Correct the case of DOS extensions

15. Convert DOS format text files to UNIX format

16. Back up

17. Install Samba and VNC so you can use Windows programs for which there's no substitute

18. Continue to seek substitutes for remaining Windows apps

This article gives tips on how best to approach some of these issues.

Banning proprietary upgrades and new programs

This is a must. Microsoft upgrades cut off your avenues of escape. Often the new version breaks compatibility with other software to which you might transition. When UCITA passes in Washington State, it will be illegal to reverse engineer Microsoft software for the purpose of importing its data files. If you ban proprietary upgrades right now, there's an excellent chance you'll have a clear conversion path when the time comes.

A huge issue is brewing with copy protection. I've heard a vague and unsubstantiated rumor of the existence of some modern proprietary software that requires a new "key" from the vendor each and every time you reinstall.
According to this rumor, after a certain number of reinstalls, they charge significant amounts (like $35.00) to read you that key over the phone. Every app, $35.00 (or whatever) Get a virus? $35.00. Disk crash? $35.00. Windows meltdown? $35.00. Motherboard dies? $35.00.
Windows registry got too big? $35.00. And in 5 years, do you think the vendor will be willing to sell you the key? Or will they force you to upgrade all those apps you use just to get at ancient data? And of course, those new versions might convert your data to a format not importable into any other software.
All this is rumor, but my reading of the text of the UCITA proposed legislation tells me that it's all perfectly legal and enforceable under UCITA. The software vendor wouldn't really do this to their customers, would they? I don't know -- how do you think Microsoft would handle such a situation?

Would you bet your business on it?

You can't switch all your apps at once. You must continue to use your Windows box as an appliance to run a few apps. You need to be able to install and reinstall that appliance and those apps over and over again in years to come.

Segregate your data from your apps and OS

I think you've probably done this already. It's the only sane way to handle data. But all too often business desktop computers have data scattered in various directories off the root of C:. Try to either put them on a separate drive (d: is a good pnemonic), or off a single directory on C: (/d). Leave the "My Documents" directory where it is. Most apps use that as the default data repository, and you can always treat that as a special case when you convert.

Can you imagine how horrible it would be to have various Windows system files scattered throughout the data on your new Linux desktop? Segregate your data before the transition.

Make a transition plan
There will be those who tell you "just do it -- what you call planning is just procrastination". Most likely they aren't responsible for a business. Ignore them. There will be those who tell you not to switch at all. If they follow their own advice, the day may come when they'll be down on their knee begging Bill Gates' tax collectors to let them have their data. Transitioning to Linux isn't easy, but it's necessary given today's license agreements and laws.

Although it was written 6 months ago, the June 2000 Troubleshooting Professional Magazine provides an excellent example of a transition plan. For the most part it's the exact plan I executed in my transition.

Do final windows backup
No matter how well you plan your conversion, there's a likelihood of losing or corrupting some files. And it can happen without your knowledge. Two years from now you might find a Word document or a Zip file with some of its CR characters removed. If you keep the last Windows backup forever, this is not a problem.

Be sure the Windows backup is in a common format readable in Linux and most other operating systems. Linux is wonderful, but we all might be on something even better five years from now. Make sure the backup includes an uncompressed version of the program used to archive and compress the data. That way, no matter what happens in Linux, you can always format up a Windows box, restore the files, and Samba them over.

Make sure you use good, reliable, ubiquitous media. It's very realistic to assume you'll need this data seven years from now. I once needed a 13 year old file from my Kaypro, and couldn't find it. Nor could I read my old Kaypro diskettes -- the Uniform CPM diskette reader appears not to work with modern DOS.

Samba data across to the Linux box
Why not FTP? Many FTP clients automatically converts DOS text to UNIX text format for specified extensions. Wouldn't that be nice? Trouble is, as far as I know, FTP can't be configured to keep the original file date. If I'm wrong, please email me. File dates are essential for searching and other activities. They must be preserved.

As shown later in this article, there are automated ways to convert DOS text to UNIX text for specified extensions, and these methods are actually safer than the conversion in FTP.

Backing up your Linux data early and often
Until you do your first backup of your Linux system, your fallback for massive data corruption is to go back to Windows and do the whole Samba transfer again. As soon as your data is stable on the Linux box, before you've even converted text, back up your data. Now if something goes wrong you can simply restore from backup.

Plan to back up often in the days following your transition. Back up before and after you handle multi-word filenames. Back up before and after you change file extensions to the correct case. And of course, back up before and after you convert DOS text files to UNIX format. The rule of thumb is to back up before any work that could cause file corruption or file loss, and to back up after any large pieces of work that change the data.

Once your data is in the form you'll use on a daily basis, you can resume your normal backup schedule.

Your Tweak Directory

Many of the scripts and commands in this article operate on whole trees. They are designed to operate on trees not containing the script. After all, you wouldn't want a conversion script operating on that script itself. So you need a "tweak directory" to house the script and any associated temporary files.
If you've done as I do and store your data in the /d tree, use your home directory as the tweak directory. If you're operating in a more multi-user capacity and use your home directory as the root of your data, your tweak directory should be one outside your home directory tree (and probably outside the /home tree itself because you might be converting everyone's data at once), where you have full privileges.

Automation of Multi-file Processes
I don't recommend doing a mass delete like this:

find /d -type f | grep "Copy of" | xargs -P10 -n1 rm

Sure, that's easy and quick, but it's easy to make a mistake, and the stinky stuff will really hit the fan if you make a mistake. If the grep command had a -v, the preceding command would delete everything but the "Copy of" type files.

So instead, I redirect a list of the files to a script. From the tweak directory, I'd run the following command:

find /d -type f | grep "Copy of" > danger.sh

Now file danger.sh contains a list of every file in the tree starting with "Copy of". You can quickly peruse it and see if it contains any files you really don't want to delete. If so, delete the file's line from the file. Next, use VI to turn it into a script. In the case of a deletion, it's as simple as this inside VI:

:%s/^/rm -f /

After making the file into a script, eyeball it once again to make sure it does what you want, and then save it and make it executable (using chmod). Now you can run the script knowing exactly what it will do.

During my conversion, I went the xargs route for awhile. It didn't really save much time, because I had to check, double check, and triple check every command. There's no second chance with a single command mass-deletion. Half way through the conversion I decided it was worth the extra effort to create scripts enumerating each file to convert. That's what I recommend to you.

With apologies to the classic "Real Men Don't Use Pascal", creating a file by file script to do a mass conversion or deletion is "What you see is what you get", while using a single command containing xargs is more "You asked for it, you got it". I'm just not man enough for the latter. That's why every deletion and conversion in this article uses a file by file script rather than a single command.

One more thing. I always call those scripts danger.sh. Why? Because they're highly dangerous, and anyone tempted to run them needs to know that. Delete such scripts when you're done with your conversion.

Finding and fixing filenames with spaces

Filenames containing spaces are ugly in any operating system using space to delineate command line arguments. So they're ugly in DOS, Windows, and yes, Linux. The trouble is, Windows apps frequently default saved files to filenames containing spaces. (KDE and Gnome both do also, but that's another story).

I suggest that before converting text files to UNIX format, you remove the spaces from your data's filenames. But whatever you do, DO NOT remove spaces from files and directories created by your Linux installation or Linux app installations, as that will break your installation. But as far as files you create or created in the past -- I highly suggest eliminating the spaces. This is another reason I always recommend segregating your data from your apps and configuration. Start by finding any directories containing space:

find /d -type d | grep " "

Fix as appropriate. There probably won't be too many.

Now find out how many files have spaces in their filenames:

find /d -type f | grep " "

If there are just a few, fix them manually. But if there are more than maybe 10, it's best to go semi-automated. The first step is to see how many are infamous "Copy of myfile.txt", or "Copy (3) of mydoc.doc", or the like.
Your mileage may vary, but I decided to delete all of those. Why? Because they were almost certainly made as a temporary measure. If I really wanted to keep a version of a file, I would have named it differently. And of course, I still have the file on my final Windows backup.

So from your tweak directory you can do this:

find /d -type f | grep "Copy of " > danger.sh

Edit danger.sh with VI, peruse the list, and make sure you want to delete them all. If you run across one that shouldn't be deleted, delete its line from danger.sh. Now prepend rm -f to every filename:

:%s/^/rm -f /

Look at the file one last time to make sure it does what you want, and if so, save it and run it. All those obnoxious "Copy of" files will be gone.

You can do the same by following the same procedure for those pesky "Copy (3) of" files with the following:

find /d -type f | grep "Copy (.) of " > danger.sh
Now that you've hopefully deleted most of your space containing files, you're ready to tackle the remainder. Obtain a list of all files containing spaces in the filename:

find /d -type f | grep " " > danger.sh

Look at the list. You may wish to leave many as-is. For instance, if you have a hundred multiword filenames in a directory, and they all pertain to a Windows program, and you won't be using them much in the Linux environment, you may wish to leave them as-is. If so, delete them from the file. But be aware that multiword files can mess up directory tree based processes.

Look at the file, and decide whether you're going to delete most of them or rename both of them. What you will do is make the file into a script to either delete or rename, and then change those files that are exceptions. In my case, most of them got renamed because I didn't have time to view them before deletion. So I made a rename script using VI:

:%s/\(.*\)/mv \1 \1/

The preceding command says "take the entire content of the line and store it in \1. Now replace each line with "mv ", then \1 and a space, and then \1 again". The result is that each line is a move command whose source and destination are identical. Next you go line by line to each destination and change it to a filename with no spaces. Remember, if you see a file that you want to delete, simply remove its destination and change the mv to rm -f.

Filenames containing spaces can really mess up commands, especially mass-file commands. They require gratuitous use of quotes. They're ugly. Once you've eliminated multi word filenames from your data (once again, not from files pertaining to your Linux or Linux app installation), it's time to fix file extension cases and convert DOS format text files to UNIX format.

Fixing Upper Case Extensions.

DOS had only upper case in their filenames. Windows could have either, but .txt was the same as .TXT and .tXt. Linux distinguishes filename case. In Linux, .txt is customarily plain text, while .TXT or .tXt are unknown filetypes. If you're anything like me, many of your files are the pre-windows all upper case, while others are whatever case your Windows app happened to default to. So your first step is to convert common extensions to their customary (almost always lower case) form. The following example is for .txt, but it works on any extension.

Start with a list of all the .txt files on your system:

find /d -type f | grep -i "\.txt$" > danger.bat

In the preceding command, note the -i arg to grep. That makes the grep case insensitive, yielding .txt, .TXT, .tXt, and any other case combinations. Note also that the regular expression escapes the dot with a backslash, because otherwise the dot would mean "any character". Note also the dollar sign on the end, which stands for end of line. If the .txt isn't the final thing on the line, it's not a .txt file. You certainly wouldn't want to rename a file like myreport.TXT.tar.gz.

So now you have a list of all the files ending in the upper or lower case letters t, then x then t. You certainly don't want to rename any files that are already lower case, so delete them from danger.sh with this simple VI command:

:g/\.txt$/d

The preceding command deletes every line whose extension is already lowercase .txt, while leaving those whose extensions are not entirely lowercase.

	!!! CAUTION !!!
Be sure you have not turned off VI's case sensitivity. If, during this session, you previously issued the command :set ic, or if that command is in your VI resource files or startup script, case sensitivity is disabled. If you run the preceding command with case sensitivity off, the command will delete every line, not just those ending in lowercase .txt.

Now convert the file into a script to rename the files with lowercase extensions. First make move commands like this:

:%s/\(.*\)/mv \1 \1/

Now every line is a move command with destination identical to source. Change the destinations to lowercase as follows:

:%s/\.txt$/.txt/i

The dollar sign on the end of the search string matches "end of line" and therefor prevents this from changing the source extension. The i on the end of the command makes the search case insensitive, so that it will find .TxT at the end of a line, and change it to .txt.

Examine the file, make sure it does what you want to the files that need it, and if so, save it and run it. The cases of all your .txt files will be lowercase. You can do this with other common Linux extensions, such as .htm, .html, .c, .cpp, .h, .java, .pas, .pas, .pl, .py, and the like.

Converting DOS Text to UNIX Format

DOS based operating systems, including all forms of Windows I'm familiar with, end a line of text with a carriage return followed by a linefeed. That's Ctrl+M followed by Ctrl+J. ^M followed by ^J. Octal 015 followed by octal 012. Decimal 13 followed by decimal 10.

UNIX ends text lines with just the linefeed (Ctrl+J, ^J, octal 012, decimal 10).

Sometimes it doesn't matter. For instance, VI handles both DOS and UNIX formatted files exactly how you would want. But most UNIX utilities and apps that read a line grab everything up to the linefeed, meaning they deliver a line of text with the Ctrl+M tacked on the end. This usually causes processing errors.

You haven't lived until you debug a formerly working CGI script that, unknown to you, has been saved as DOS and FTP'ed binary up to a UNIX server.

So to make a long story short, you must attempt to make as many of your text files as possible comply with the UNIX convention, now that you're on a UNIX box. But that must be balanced by safety concerns.

Imagine a data file that is not line based. Maybe it's fixed record length. It has Ctrl+M characters as legitimate data (maybe they represent a value of 15 in a byte field that can contain a value between 0 and 255, or maybe part of a 4 byte integer). Imagine deleting all the Ctrl+M characters from that file. As you'd imagine, its app would malfunction. So instead you delete only Ctrl+M's that immediately precede Ctrl+J's. So maybe one record in the file has that sequence, and its Ctrl+M is deleted.
Now when you run the app, it works perfectly on all records above the one with the deleted char, but it malfunctions on that record and all below it. If you're really lucky, the program will segfault when it hits the bad record. But more likely it will simply shift everything left one byte, and output numerically wrong data. And maybe segfault on that final short record (or maybe not).

As if all of this isn't enough concern, you must make sure the conversion does not alter the file date. After all, if you didn't care about the file date, you would have used FTP instead of Samba to move the files from the Windows box to the Linux box, because many FTP clients can text convert by extension. But you wanted to preserve that filedate, so you used non-text-converting Samba.

The preceding discussion introduces the fact that EXTREME CARE must be taken when converting from DOS text to UNIX text format. It's better to forgo converting 100 legitimate text files than to wreck one binary file.
But leaving all text files in DOS format is not an option, as it would slow your work for years to come. So you examine the tradeoff between automation and safety, and do your best. This article describes what I did.

I used semi-automated methods. Basically, I used the find command to assemble huge lists of files, and converted them to scripts that call a conversion program for each file. I used several safety measures:

· Conversions were done by extension, with the hope that all .html and .txt files really are text files.

· The single file conversion program takes only one file as an argument, and will abort if fed wildcards or multiple files.

· The single file conversion program does nothing unless the file is found to contain Ctrl+M Ctrl+J sequences. No files are touched needlessly.

· If the program is run on a file already in UNIX format, the file will not be touched.

· The single file conversion program defines a file as binary if it contains any characters other than space through tilde, Carriage Return (^M), Linefeed (^J), Pagefeed (^L), Tab (^I), and DOS EOF (^Z). While it's possible for a binary file to contain only this set of characters, it's unlikely. When combined with the procedures to ensure that this program is run only on files of known text extensions, it's enough safety.

· A backup of the original is kept in the same directory, with the additional extension of .dos.

· The original filedate is preserved.

In other words, the priorities are, in order, safety, safety and safety. I could have written a one liner to convert all .pl files in a tree, but heaven help me if one of them was a binary file instead of a Perl file.

So let me now introduce the single file conversion program, a shell script called crlflf which I put on the path.
The explanation of the program follows its code:

	#!/bin/sh

NO WARRANTEE, USER IS RESPONSIBLE FOR ANY DAMAGE CAUSED BY THIS SCRIPT

log=crlflf.log

errlog=crlflferr.log

testfile=crlflftest.txt

original=$1

dosname="$original.dos"

if test $# -eq 1; then ##### No wildcards allowed: safety

 cat -v $1 | grep -q "\^M$"

 if test $? -ne 0; then ##### If already UNIX format, do nothing

 msg="$(date +"%Y/%m/%d %H:%M:%S") : \

 Already Unix file, no action taken: [$original]"

 echo $msg; echo $msg >> $log

 else ##### If not UNIX format, convert if text

 #*** Files with chars other than ***

 #*** space-tilde, ^M, ^L, ^Z and Tab ***

 #*** are considered binary ***

 #*** and therefore should not be touched ***

 sed -n -e '/[^ -~^M^L^Z\]/p' $original > $testfile

 if test -s $testfile; then ##### If binary, don't convert

 msg="$(date +"%Y/%m/%d %H:%M:%S") : /

 ERROR: Suspected binary file [$original]"

 echo $msg; echo $msg >> $log; echo $msg >> $errlog

 else ##### If not binary, convert

 mv -f $original $dosname

 cat $dosname | sed -e 's/^M^M*$//g;s/^Z//g' > $original

 touch -r $dosname $original

 msg="$(date +"%Y/%m/%d %H:%M:%S") : Converted $original"

 echo $msg; echo $msg >> $log

 fi

 fi

else ##### If multiple args, do nothing

 msg="$(date +"%Y/%m/%d %H:%M:%S") : /

 ERROR: Wrong # of args, expect 1, got $# from [$@]"

 echo $msg; echo $msg >> $log; echo $msg >> $errlog

fi

cat -v $1 | grep -q "\^M$" -- cat -v outputs the file after changing all control characters to a carat (^) followed by the letter. This command tests for the presense of a carriage return at the end of a line, indicating a DOS formatted text file. Please remember that in this particular command, the carat and the letter are 2 separate characters!

[^ -~^M^L^Z\] means a line containing any char not in the space through tilde printables or a carriage return (^M), a page eject (^L), or a DOS EOF char (^Z), or a tab character (^I, which shows up as a tabstop of whitespace in a default configured VI editor).

Please remember when cutting and pasting the preceding code that you must change the ^M to a real Ctrl+M by typing Ctrl+V followed by Ctrl+M. Same goes for the other control chars.

s/^M^M*$//g;s/^Z//g means delete all sequences of carriage returns occurring at the end of a line, and delete all Ctrl+Z characters.
Please remember when cutting and pasting the preceding code that you must change the ^M to a real Ctrl+M by typing Ctrl+V followed by Ctrl+M. Same goes for the Ctrl+Z control chars.

In the preceding script, all filenames and filename components are defined as variables. First it's tested for multiple arguments, and exits with an error if there are multiple arguments. The reason is simple. Wildcards expand to multiple arguments, and nobody wants someone issuing the command crlflf *.

The next test checks if it's already in UNIX format, and if so, the file is not touched. It might have been easier to program and faster to let the program harmlessly copy the UNIX file, but for safety's sake, we touch only what we must. The test for DOS uses cat -v to express control characters as printable 2 character equivalents, starting with a carat (^). So in this particular command, ^M is two separate characters. If you don't like this, I'm sure you can find a substitute using sed and real control characters.

After that, it's tested to see whether it's binary or text, and if binary, an error is issued and the file is not touched. This test uses sed to build a file comprised of all lines containing any character not in the set [space-tilde, Tab (^I), Carriage Return (^M), Linefeed (^J), Pagefeed (^L), DOS EOF (^Z)]. If the file considered for conversion has only those characters, it's very probably intended to be a text file.

Otherwise, there's a significant likelihood it's intended to be a binary file.

The conversion itself simply deletes any Ctrl+M at the end of a line (that is, immediately before a Ctrl+J), or any consecutive run of Ctrl+M characters at the end of a line, and also deletes the Ctrl+Z characters, which are probably used only as an EOF marker in programs operating under very old versions of MS-DOS. You might wonder why I delete consecutive runs of Ctrl+M at the end of the line.

I do it because as files are FTP'ed both ways between UNIX and DOS, often incorrectly, very often several Ctrl+M characters are piled up before the Ctrl+J. Now that you're presumably not going to be doing much exchange with a Windows environment, it's a good time to clean up that mess for good.

Invoking crlflf

Believe it or not, the first time I invoked crlflf I did it from a one liner (DON'T DO THIS):
find /d -type f | grep -i "\.htm$" | xargs -P10 -n1 crlflf

As I said earlier in this article, "you asked for it, you got it". Actually, as far as I know nothing went wrong. As far as I know :-).

Don't repeat my mistake. Your data is too valuable. Do what I learned to do:

find /d -type f | grep -i "\.htm$ > danger.sh

vi danger.sh

: %s/^/crlflf /

And then you examine your script, make sure you won't be doing anything horrible, and save and exit. But don't run it yet! If you remember, the crlflf script writes to log files crlflf.log and crlflferr.log. These two files, especially the latter, are absolutely vital to cleaning up after running your script. So be sure to delete them before running your script. You don't want ghosts of runs past confusing you in the cleanup stage.

So now run the script:

./danger.sh

You'll see all sorts of messages scrolling down your screen. Hopefully most will say "Converted <filename>", and most of the remainder will tell you that no action was taken because it was already a UNIX file. But it's likely you'll get some errors, mostly because crlflf considered the file binary. Look at the files listed as binary in crlflferr.log.

Try the following command on each one:

	cat -v myfile.htm | \

 sed -e 's/\^M//' | \

 grep "\^" | \

 less

The preceding command converts unprintables to printable representations using the carat (^) character, and then filters it through grep to print only the offending lines. Then look in VI and search for the same lines. In many cases what you'll find is a single character represented by a tilde followed by a letter, such as ~V. These are characters outside of normal ascii, usually above 126 (tilde). I believe they were inserted by Windows programs to represent things like trademark symbols, non-breaking spaces (which are often better handled as , em dashes (which I like to represent as two hyphens -- easier to work with in text editors). Most can be deleted or replaced with regular ascii. In such cases you may wish to update the filedate. If so, instead of running crlflf on the file, simply execute the following VI command before saving:

:set fileformat=unix

The main point is you've done the easy 95% of your conversion in an automated fashion, leaving you time to spend more time on the files requiring a tough call.

