) #nosqll3

A Journey through the MongoDB
Internals?

Christian Amor Kvalheim
Engineering Team lead, MonboDB Inc, (@christkv

, mongoDB

Who Am |

» Driver Engineering lead at MongoDB Inc

- Work on the Mongo DB Node.js driver

- Started working for MongoDB Inc June 2011
« (@christkv

» christkv@mongodb.com

mailto:christkv@mongodb.com

Why Pop the Hood?

- Understanding data safety

- Estimating RAM / disk requirements

» Optimizing performance

Storage Layout

. mongoDB

Directory Layout

drwxr-xr-x 136 Nov 19 10:12 journal
-rwW------- 16777216 Oct 25 14:58 test.0
-rw------- 134217728 Mar 13 2012 test.1l
S o 268435456 Mar 13 2012 test.2
-fW-=-=-==-=-- 536870912 May 11 2012 test.3
-rw------- 1073741824 May 11 2012 test.4
-rwW--=----- 2146435072 Nov 19 10:14 test.5
-fW=-=====-=- 16777216 Nov 19 10:13 test.ns

A Journey through the MongoDB Internals?

Directory Layout

» Aggressive pre-allocation (always 1 spare file)

 There is one namespace file per db which can
hold 18000 entries per default

« Anamespace is a collection or an index

Tuning with Options

« Use --directoryperdb to separate dbs into own
folders which allows to use different volumes
(isolation, performance)

« Use --smallfiles to keep data files smaller

- If using many databases, use —nopreallocate and --
smallfiles to reduce storage size

- |If using thousands of collections & indexes,
Increase namespace capacity with --nssize

Internal Structure

. mongoDB

Internal File Format

Namespaces

test.ns

Extents

Data Files

Extent Structure

y []
xPrev ; : xPrev
bl 2

firstRecord - firstRecord

lastRecord lastRecord

Extents and Records

Data Record 1 Data Record 2

Extent

To Sum Up: Internal File Format

 Files on disk are broken into extents which contain
the documents

A collection has one or more extents

- Extent grow exponentially up to 2GB

« Namespace entries in the ns file point to the first
extent for that collection

What About Indexes?

. mongoDB

Indexes

 Indexes are BTree structures serialized to disk

 They are stored in the same files as data but using
own extents

28

The DB Stats

> db.stats()
{ Hdb" . Htestll,
"collections" : 22,
"objects" : 17000383, ## number of documents
"avgObjSize" : 44.33690276272011,
"dataSize" : 753744328, ## size of data
"storageSize" : 1159569408, ## size of all containing
extents
"numExtents" : 81,
"indexes" : 85,
"indexSize" : 624204896, ## separate index storage
size
"fileSize" : 4176478208, ## size of data files on disk
"nsSizeMB" : 16,
"Ok" - 1

A Journey through the MongoDB Internals?

The Collection Stats

? db.large.stats()
"ns" : "test.large",
"count" : 5000000, ## number of documents
"size" : 280000024, ## size of data
"avgObjSize" : 56.0000048,
"storageSize" : 409206784, ## size of all containing
extents
"numExtents" : 18,
"nindexes" : 1,
"lastExtentSize" : 74846208,
"paddingFactor" : 1, ## amount of padding

"systemFlags" : 0,
"userFlags" : 0,
~ "totallIndexSize" : 162228192, ## separate index storage
size

"indexSizes" : {
AR 1162228192

}s
ok" : 1

A Journey through the MongoDB Internals?

What's Memory Mapping?

. mongoDB

Memory Mapped Files

- All data files are memory mapped to Virtual Memory by
the OS

- MongoDB just reads / writes to RAM in the filesystem
cache

« OS takes care of the rest!

- Virtual process size = total files size + overhead
(connections, heap)

- If journal is on, the virtual size will be roughly doubled

Virtual Address Space

kernel

STACK

test.ns

LIBS

HEAP

MONGODB

NULL

Virtual Memory

Memory Map, Love It or Hate It

* Pros:
— No complex memory / disk code in MongoDB, huge win!

— The OS is very good at caching for any type of storage
— Least Recently Used behavior
— (Cache stays warm across MongoDB restarts

» Cons:
— RAM usage is affected by disk fragmentation

— RAM usage is affected by high read-ahead
— LRU behavior does not prioritize things (like indexes)

How Much Data is in RAM?

 Resident memory the best indicator of how much
data in RAM

» Resident is: process overhead (connections, heap) +
FS pages in RAM that were accessed

 Means that it resets to O upon restart even though
data is still in RAM due to FS cache

« Use free command to check on FS cache size

- Can be affected by fragmentation and read-ahead

Journaling

. mongoDB

The Problem

Changes in memory mapped files are not applied in
order and different parts of the file can be from
different points in time

You want a consistent point-in-time snapshot when
restarting after a crash

Solution - Use a Journal

« Data gets written to a journal before making it to
the data files

 Operations written to a journal buffer in RAM that
gets flushed every 100ms by default or 100MB

 Once the journal is written to disk, the data is safe
» Journal prevents corruption and allows durability
 Can be turned off, but don't!

Journal Format

_/— « Section contains single group commit

s e « Applied all-or-nothing
DurOp

DurOp

DurOp | | Op_DbContext Set database context for
subsequent operations

JSectFooter length

JSectHeader [LSN 7] ormet

DurOp data[length]

DurOp lef?gth

! offset . X
DurOp fileNo 4 Write Operation
data[length]

JSectFooter
length

offset
fileNo
| data[length]

Can | Lose Data on a Hard Crash?

- Maximum data loss is 100ms (journal flush). This can be
reduced with —journalCommitinterval

- For durability (data is on disk when acked) use the
JOURNAL _SAFE write concern ('j” option).

- Note that replication can reduce the data loss further.
Use the REPLICAS_SAFE write concern (‘'w” option).

- As write guarantees increase, latency increases. To
maintain performance, use more connections!

What is the Cost of a Journal?

 On read-heavy systems, no impact
» Write performance is reduced by 5-30%
- If using separate drive for journal,as low as 3%

* For apps that are write-heavy (1000+ writes per
server) there can be slowdown due to mix of
journal and data flushes. Use a separate drive!

Fragmentation

. mongoDB

What it Looks Like

Both on disk and in RAM!

Extent

Fragmentation

» Files can get fragmented over time if remove() and
update() are issued.

« |t gets worse if documents have varied sizes
- Fragmentation wastes disk space and RAM
- Also makes writes scattered and slower

 Fragmentation can be checked by comparing size
to storageSize in the collection’s stats.

How to Combat Fragmentation

 compact command (maintenance op)
- Normalize schema more (documents don’t grow)
* Pre-pad documents (documents don’t grow)

« Use separate collections over time,then use
collection.drop() instead of collection.remove(query)

« —-usePowerOfZsizes option makes disk buckets
more reusable

In Review

. mongoDB

In Review

 Understand disk layout and footprint

« See how much data is actually in RAM

« Memory mapping is cool

« Answer how much data is ok to lose

» Check on fragmentation and avoid it

» https://github.com/10gen-labs/storage-viz

https://github.com/10gen-labs/storage-viz

) #nosqll3

Questions?

Christian Amor Kvalheim
Engineering Team lead, MongoDB Inc, @christkv

, mongoDB

