IPC - What is Inter-Process Communication?

Definition

Inter-Process Communication (IPC) refers to various ways of message passing and synchronization between different processes.
IPC and Networking

IPC:

· Message passing between processes on the same machine.

Networking:

· Message passing between processes on different machines (across a network).

Examples

· Messages being passed from process “ls” to process “more”, via a pipe.

% ls -las | more

· Closing an Xterm shuts down the csh program, via signal.

· Using web browser to access a WWW page, via TCP sockets.


[image: image1.emf]Kernal

Process Process Process Process Process Process

Shared Info

Shared Memory

Files System

More Efficient

Examples:

files

Semaphore, socket, pipe, message queue, signal Shared memory

IPC Mechanisms

IPC classified by implementation mechanisms.


IPC Properties

Persistence

How long and under what conditions an IPC object remains in existence.

· Process-persistent: exists until last process with IPC object open closes the object. E.g. pipe.

· Kernel-persistent: exists until kernel reboots or IPC object is explicitly deleted. E.g. semaphore, shared memory.

· Filesystem-persistent: exists in the file system or until IPC object is explicitly deleted. E.g. shared file, memory mapped shared memory.

Name spaces

IPC objects can be referred by names or identifiers.

E.g. sockets, pipes and files are identified with file descriptors, which is a systemwide unique non-negative integer.

E.g. semaphore, message queue and shared memory are named with keys and identified by system IDs in their own name spaces.

Permission

The same as Unix file access permission, that is, readable, writable, executable for user, group, and others.

Throughput

Throughput is referred to the bandwidth of the message passing.

E.g. TCP/IP sockets over a 10-Base Ethernet cannot transmit more than 1MB/s.

Latency

Latency is referred to the delay incurred when passing a message.

Most IPC communication can be completed in micro-seconds, e.g. semaphore, signal. Some can be done in nano-seconds, e.g. shared memory.

Limitations

System limits for the number of IPC objects.

File descriptor based IPC cannot exceed the total system file descriptors.

Semaphore Concept

Definition

A semaphore is a primitive used to provide synchronization between processes on a Unix system (or threads in a process).

· A binary semaphore can assume only the values 0 or 1.

· A counting semaphore can take any value between 0 and N, where N is a nonnegative number (greater than 1).

Operations on a Semaphore

· Create a semaphore

· Create a semaphore with an initial value.

· Wait for (or lock) a semaphore

· Test the value of the semaphore, wait (or block) if the value is less or equal to 0, and then decrements the value by 1 once it’s greater than 0.

· Post to (or unlock) a semaphore

· Increment the semaphore value by 1.

· Destroy a semaphore

· Remove the semaphore from kernel.

Semaphore Programming Model

Mutual exclusion

Controlling exclusive access to a common shared resource, to prevent data corruption. For example, writing to a shared memory space between two processes has to be mutually exclusive. Use binary semaphore.

Synchronization

Synchronizing process executions. One process has to wait for one (or more) processes to complete their job before it can proceed. Use binary or counting semaphore.

Resource control

Controlling the total usage of a shared resource. This ensures that the use of a certain resource is kept under the maximum allowable units. Use counting semaphore.

Semaphore Properties

Persistence

System V semaphore: kernel-persistent.

Posix semaphores: process-persistent, kernel-persistent or filesystem-persistent.

Name space

Semaphore Keys and IDs (System V). Keys are used when creating the semaphore and IDs are used in all the references after. File path (Posix semaphore).

Permission

Permission can be specified by the process, the same as a file.

Latency

A pair of System V lock() and unlock() operations typically takes less than 20 micro- seconds on a general-purpose Unix (e.g. HP-UX, Linux). Posix memory based semaphore takes less than 100 nano-seconds.

Limitations

Available on the same machine only.

Posix Semaphore

Posix defines named and memory-based semaphores. There’s no requirement to maintain them in kernel.

Posix system calls are much simpler than those of System V.
There is no related system command for the Posix semaphores.

Posix Named Semaphore

Posix named semaphore shares the name space of the file system and can be implemented with files. So it can be filesystem-persistent or kernel-persistent.
Persistent Shared Memory

Shared memory can be mapped to a file and all the changes to the shared memory can be mirrored in a file. OS does synchronization between the two automatically.
Caveats

· Must synchronize accesses to prevent data corruption.

· Initialization should be done only once and need to prevent access before initialization.

· Memory in the shared memory area are not guaranteed to be word (32 bits or 64 bits) aligned. Casting (for int, long) could cause segmentation violation.

· System shared memory can be fragmented. A large contiguous block memory may not be available. Instead of claiming a large contiguous chunk, claim smaller chunks and chain them together.

· Shared memory can be swapped to virtual memory, which could seriously hinder application performance. We can lock the shared memory in RAM.

· Who should destroy shared memory segments?

· Shared memory segments contain valuable data and debugging information.

· It’s recommended that no process should destroy any shared memory. Use ipcrm command to remove shared memory in a script at system start-up or shut-down.

_1402939445.vsd
Title
￼


Process


Process


Process


Process


Process


Process


Shared Info


Shared Memory


Kernal


Files System


More Efficient


Examples:
files


Semaphore, socket, pipe, message queue, signal


Shared memory


IPC Mechanisms


IPC classified by implementation mechanisms.



