This document is provided without warranty, always vet out what works best for you and your organization.

Enterprise Application & Development Architecture Standard

Abstract

This standard addresses visual software models within the analysis and design disciplines and their lifecycle. The standard applies to all object oriented development at Corporate.

· What is a model?

· “A model is a simplified view of a system. It shows the essentials of the system from a particular perspective and hides the non-essential details”

· (RUP – Best Practice: Model Visually.)

· Why do we model?

· “Models help us to organize, visualize, understand, and create complex things”. They provide the ability to explore and compare design alternatives at a low cost and communicate decisions unambiguously

· (RUP – Best Practice: Model Visually.)

· That is, models are a cost effective means to evolve application design and communicate design decisions across distributed teams.

It is assumed that the models in this standard would normally be created by object-oriented development teams during the design process. These standard models also happen to provide a cost effective means to insure that development teams design applications that adhere to Corporate Java Development Standards. These modeling standards are effective in assessing an object-oriented development team’s adherence to development environment standards, i.e. Enterprise Java Programming Model, and run-time environment standards, i.e. Internet Application Framework.

Relying on industry standards where practical and hence, the Unified Modeling Language (UML) is the standard object oriented modeling language that will be used within the analysis and design disciplines at Corporate. Entity Relationship (E-R) Diagrams are the standard for data modeling at Corporate.

The models within this standard are proven communication vehicles either across the software development industry (UML models) or within corporate.

As indicated earlier, models provide the ability to cost effectively review and evolve applications during development and maintenance. This standard implies that design reviews will be conducted. The reviewer could be another team member as the team collaborates to evolve the design. The reviewer could also be a senior technical lead, Architect or Enterprise Architect. Additional standards, such as the In-Depth Review, will address who is involved in the review process. This standard simply states that someone reviews the models. It also implies that the design agreed upon in the design review is carried forward in the code.

Diagram Standards

Section overview:

General Diagram Information
· Diagram creation

· Standard – diagrams that are required.

· Guideline – diagrams that are optional

· Standard/Guideline – diagrams that are required or optional depending on context

· Diagram Header – standards that apply across diagrams.

· Diagrams – pertinent description of the diagrams and references to additional information from the perspective of the Java Development Framework. The information in this section supplements the corporate templates and examples.

· Diagram Lifecycle – details the lifecycle of the required diagrams.

General Diagram Standards

The scope for these artifacts is the application being created or enhanced. For example, a physical data model would not be required for tables that another application maintains and the application being developed only accesses.
· Diagram Creation

· Standard
· Diagrams that are required for all applications:

· Architecture Diagram,

· Design Class Diagrams,

· Design Interaction Diagrams,

· Physical Data Model.

· Diagrams that are required for web applications:

· View Layer Overview Table,

· Screen Mockups.

· Guideline
· Diagrams that are optional for all applications:

· A separate Analysis and Design document should further define these details.
· Standard/Guideline
· Diagrams that are required or optional for all applications depending on context:
· Analysis Class Diagram (Conceptual Model)
· This artifact is required for projects greater than 30 effort days for cycle two, or when more than two developers are involved. It is also a standard when an outside vendor does the modeling. It is a guideline for other development efforts.
· When enhancing or revising an existing piece of software, the modeler should add his/her analysis classes to the existing Design Class Diagram.
· Logical Data Model
· This artifact is required for projects greater than 60 effort days for cycle two, or when more than two developers are involved.
· It is also a standard when an outside vendor does the modeling.
· It is a guideline for other development efforts.

· Diagram Header
· All diagrams should have a text header that indicates what the diagram represents, such as a package name and below that the type of diagram.

· Diagrams
· Analysis Class Diagram for the Domain Layer (Conceptual Model)
· An Analysis Class Diagram for the Domain Layer is “a visual representation of conceptual classes”
· It contains classes, and associations between classes including multiplicity.

· Attributes are optional and created as needed.

· It does not contain behavior (methods) or implementation details
· “How to” Information

· A separate Analysis and Design document should further define these details.
· Design Class Diagrams
· Class diagrams contain any of the standard notations for a UML class diagram.
· Class diagram(s) are required for the Domain Layer.
· It is strongly recommended that the class diagrams also be created for the Controller and View Layers.

· “How to” information
· “How to” information for this artifact can be found in a separate Analysis and Design document should further define these details

· Interaction Diagrams (Collaboration/Communication or Sequence Diagrams)

· A separate Analysis and Design document should further define these details

· “How to” information

· “How to” information for this artifact can be found in a separate Analysis and Design document should further define these details

· Diagram Lifecycle

· Consider starting with a hand generated model for the diagrams below, it is acceptable to use tool-generated models through the rest of the lifecycle.
· Living Documents

· The Architecture Diagram is a manually maintained living document. These documents need to be kept up to date during development and maintenance.

· Point-in-time Documents

· The Architecture Diagram is a manually maintained living document. These documents need to be kept up to date during development and maintenance.

