Load Balancing and Fail Over Scenarios
Since the proposed programming model is partly driven by load balancing and fail over concerns, next we will consider load balancing and fail over scenarios.

If the solution implemented for load balancing implements server/IP affinity (stickiness), requests go back to the same server while the client's HttpSession is active, and the impact of load balancing on the programming model is minimal. For example, caching can be used as an effective means to improve performance. The proposed programming model does not address state that is global to an application for brevity's sake.

When the application server fails, the state of the JVM is lost and we rely on the DBMS to recreate the starting point of the user for their next transaction. There are two scenarios related to fail over. The application server fails while a client's transaction is in process or it can fail between client transactions.

First let us consider if the application server fails between transactions. When the application comes up on the new server, the user's HttpSession is lost except for what has been persisted on the DBMS. Lazy initialization minimizes the effect of recreating state in the new JVM.
Depending on the needs and design of the application there may be an impact on the user. The user may need to be notified that a failure has occurred. They would then navigate back to their unit of work and enter any of their session state that has not been persisted. In the case of an application that was not using server/IP affinity, the user would never know that something had failed between the transactions and would continue to work right where they had left off. They might be required to enter any information that was not stored as part of the last transaction, however in this case because server/IP affinity is not being used that information should be minimal.

If the application server fails within the scope of a transaction, the data that would normally be persisted within the scope of the transaction will be lost. Otherwise, the scenario is identical to application server failure outside the scope of a transaction. This would be the same scenario for an application that was not using server/IP affinity because the current unit of work would normally be lost. If all of the required information was part of the session, the unit of work could simply continue on the JVM that was passed the request upon failure of the initial JVM.

Deployment Considerations
Deployment practices need to be considered when using Load Balancing and failover. For example, a user can choose to only deploy 1 JVM at a time and changes appear mostly transparent to the end user, if you are using server affinity. It can also be decided that the entire application needs to be brought down and all JVMs deployed together. This is normally the pattern followed when a database change or other similar change is happening at the same time that would cause old code to fail when the change occurred.

There is a difference in deployments between distributed application JVMs and those running on zOS. In the distributed environment there are multiple JVMs created and each is deployed separately. On zOS there is 1 JVM name and there are multiple servants created for that 1 JVM. Therefore, deploying 1 JVM at a time is not an option unless there are multiple JVMs with multiple servants.

Configuration Considerations
It is necessary to consider the impact of infrastructure changes, such as server moves, that can affect the application regarding configuration. If your application is dependent on IP address or server name, then as JVMs are moved by the infrastructure, problems can arise.
The application should be written in such a way that all the EAR files for each JVM are identical except for the name of the file if there are multiple JVMs with different names. Best practices that allow for the EAR to be the same across JVMs include:

· Find configuration information based on the current machine name.

· Provide DNS alias for each JVM and refer to those aliases in your configuration.

· Use a Corporate lookup for each JVM.

· Set an environment variable to note the current machine similar to how IT_ConfigSuffix is used to determine environment.

It is sometimes important in configuration to consider how other JVMs would be found in case of needing to communicate with them. Publish/subscribe is a good pattern to use when this is necessary such as when operating multiple servants under 1 JVM in zOS.

BigIP Information and Settings

It is important to understand where the failure points are within an application. Today it is required that an application is completely in the one network or the other, because load balancing does not work between the networks.

· Set the maximum log size and the rotation timing so that logs do not roll every
3 minutes.
 SUBJECT * MERGEFORMAT Page 1 of 1

